scholarly journals Case Study on Integrated Architecture for In-Memory and In-Storage Computing

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1750
Author(s):  
Manho Kim ◽  
Sung-Ho Kim ◽  
Hyuk-Jae Lee ◽  
Chae-Eun Rhee

Since the advent of computers, computing performance has been steadily increasing. Moreover, recent technologies are mostly based on massive data, and the development of artificial intelligence is accelerating it. Accordingly, various studies are being conducted to increase the performance and computing and data access, together reducing energy consumption. In-memory computing (IMC) and in-storage computing (ISC) are currently the most actively studied architectures to deal with the challenges of recent technologies. Since IMC performs operations in memory, there is a chance to overcome the memory bandwidth limit. ISC can reduce energy by using a low power processor inside storage without an expensive IO interface. To integrate the host CPU, IMC and ISC harmoniously, appropriate workload allocation that reflects the characteristics of the target application is required. In this paper, the energy and processing speed are evaluated according to the workload allocation and system conditions. The proof-of-concept prototyping system is implemented for the integrated architecture. The simulation results show that IMC improves the performance by 4.4 times and reduces total energy by 4.6 times over the baseline host CPU. ISC is confirmed to significantly contribute to energy reduction.

Author(s):  
Mohamed Issam Ayadi ◽  
Abderrahim Maizate ◽  
Mohammed Ouzzif ◽  
Charif Mahmoudi

In this paper, the authors propose a novel forwarding strategy based on deep learning that can adaptively route interests/data packets through ethernet links without relying on the FIB table. The experiment was conducted as a proof of concept. They developed an approach and an algorithm that leverage existing intelligent forwarding approaches in order to build an NDN forwarder that can reduce forwarding cost in terms of prefix name lookup, and memory requirement in FIB simulation results showed that the approach is promising in terms of cross-validation score and prediction in ethernet LAN scenario.


Author(s):  
Nabil Mohareb ◽  
Sara Maassarani

Current architecture studios are missing an important phase in the education process, which is constructing the students’ conceptual ideas on a real physical scale. The design-build approach enables the students to test their ideas, theories, material selection, construction methods, environmental constraints, simulation results, level of space functionality and other important aspects when used by real target clients in an existing context. This paper aims to highlight the importance of using the design-build method through discussing a design project case study carried out by the Masters of Architecture design programme students at Beirut Arab University, who have built prototype units for refugees on a 1:1 scale.


2021 ◽  
Vol 13 (2) ◽  
pp. 24
Author(s):  
Mohammed Amine Bouras ◽  
Qinghua Lu ◽  
Sahraoui Dhelim ◽  
Huansheng Ning

Identity management is a fundamental feature of Internet of Things (IoT) ecosystem, particularly for IoT data access control. However, most of the actual works adopt centralized approaches, which could lead to a single point of failure and privacy issues that are tied to the use of a trusted third parties. A consortium blockchain is an emerging technology that provides a neutral and trustable computation and storage platform that is suitable for building identity management solutions for IoT. This paper proposes a lightweight architecture and the associated protocols for consortium blockchain-based identity management to address privacy, security, and scalability issues in a centralized system for IoT. Besides, we implement a proof-of-concept prototype and evaluate our approach. We evaluate our work by measuring the latency and throughput of the transactions while using different query actions and payload sizes, and we compared it to other similar works. The results show that the approach is suitable for business adoption.


2020 ◽  
Vol 10 (15) ◽  
pp. 5212
Author(s):  
Youhwan Seol ◽  
Jaehong Ahn ◽  
Sehyun Park ◽  
Mookeun Ji ◽  
Heungseok Chae ◽  
...  

Decentralization and immutability characteristics of blockchain technology has attracted numerous blockchain-based systems and applications to be proposed. However, technical shortcomings such as low transaction speed, complexity, scalability, and vulnerability to certain attacks have been identified, making it challenging to use the technology on general consumer applications and services. To address the problem, we propose a new application service platform architecture called DDNB (Doubly Decentralized Network Blockchain). DDNB divides the system into multiple layers in order to take advantage of permissioned blockchain for its processing speed and security, while allowing permissionless open use of the system to application developers. To allow any node to freely participate in application services, DDNB adopts a novel periodic node self-verification process and query chaining mechanism to authenticate newly joining nodes and validate transactions effectively and efficiently. The proposed architecture is evaluated in terms of its processing speed and security on a real proof-of-concept prototype system.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Mohammad Ali Badamchizadeh ◽  
Iraj Hassanzadeh ◽  
Mehdi Abedinpour Fallah

Robust nonlinear control of flexible-joint robots requires that the link position, velocity, acceleration, and jerk be available. In this paper, we derive the dynamic model of a nonlinear flexible-joint robot based on the governing Euler-Lagrange equations and propose extended and unscented Kalman filters to estimate the link acceleration and jerk from position and velocity measurements. Both observers are designed for the same model and run with the same covariance matrices under the same initial conditions. A five-bar linkage robot with revolute flexible joints is considered as a case study. Simulation results verify the effectiveness of the proposed filters.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 854
Author(s):  
Raquel S. Rodríguez ◽  
Gilberto Gonzalez Avalos ◽  
Noe Barrera Gallegos ◽  
Gerardo Ayala-Jaimes ◽  
Aaron Padilla Garcia

An alternative method to analyze a class of nonlinear systems in a bond graph approach is proposed. It is well known that the analysis and synthesis of nonlinear systems is not a simple task. Hence, a first step can be to linearize this nonlinear system on an operation point. A methodology to obtain linearization for consecutive points along a trajectory in the physical domain is proposed. This type of linearization determines a group of linearized systems, which is an approximation close enough to original nonlinear dynamic and in this paper is called dynamic linearization. Dynamic linearization through a lemma and a procedure is established. Therefore, linearized bond graph models can be considered symmetric with respect to nonlinear system models. The proposed methodology is applied to a DC motor as a case study. In order to show the effectiveness of the dynamic linearization, simulation results are shown.


2021 ◽  
pp. 1-32
Author(s):  
Vu Linh Nguyen ◽  
Chin-Hsing Kuo ◽  
Po Ting Lin

Abstract This article proposes a method for analyzing the gravity balancing reliability of spring-articulated serial robots with uncertainties. Gravity balancing reliability is defined as the probability that the torque reduction ratio (the ratio of the balanced torque to the unbalanced torque) is less than a specified threshold. The reliability analysis is performed by exploiting a Monte Carlo simulation (MCS) with consideration of the uncertainties in the link dimensions, masses, and compliance parameters. The gravity balancing begins with a simulation-based analysis of the gravitational torques of a typical serial robot. Based on the simulation results, a gravity balancing design for the robot using mechanical springs is realized. A reliability-based design optimization (RBDO) method is also developed to seek a reliable and robust design for maximized balancing performance under a prescribed uncertainty level. The RBDO is formulated with consideration of a probabilistic reliability constraint and solved by using a particle swarm optimization (PSO) algorithm. A numerical example is provided to illustrate the gravity balancing performance and reliability of a robot with uncertainties. A sensitivity analysis of the balancing design is also performed. Lastly, the effectiveness of the RBDO method is demonstrated through a case study in which the balancing performance and reliability of a robot with uncertainties are improved with the proposed method.


2012 ◽  
Vol 461 ◽  
pp. 215-219
Author(s):  
Yu Qian Zhao ◽  
Zhi Gang Li

According to the characteristics of infrared images, a contrast enhancement algorithm was presented. The principium of FPGA-based adaptive bidirectional plateau histogram equalization was given in this paper. The plateau value was obtained by finding local maximum and whole maximum in statistical histogram based on dimensional histogram statistic. Statistical histogram was modified by the plateau value and balanced in gray scale and gray spacing. Test data generated by single frame image, which was simulated by FPGA-based real-time adaptive bidirectional plateau histogram equalization. The simulation results indicates that the precept meet the requests well in both the image processing effects and processing speed


Sign in / Sign up

Export Citation Format

Share Document