scholarly journals Aircraft Type Recognition in Remote Sensing Images: Bilinear Discriminative Extreme Learning Machine Framework

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2046
Author(s):  
Baojun Zhao ◽  
Wei Tang ◽  
Yu Pan ◽  
Yuqi Han ◽  
Wenzheng Wang

Small inter-class and massive intra-class changes are important challenges in aircraft model recognition in the field of remote sensing. Although the aircraft model recognition algorithm based on the convolutional neural network (CNN) has excellent recognition performance, it is limited by sample sets and computing resources. To solve the above problems, we propose the bilinear discriminative extreme learning machine (ELM) network (BD-ELMNet), which integrates the advantages of the CNN, autoencoder (AE), and ELM. Specifically, the BD-ELMNet first executes the convolution and pooling operations to form a convolutional ELM (ELMConvNet) to extract shallow features. Furthermore, the manifold regularized ELM-AE (MRELM-AE), which can simultaneously consider the geometrical structure and discriminative information of aircraft data, is developed to extract discriminative features. The bilinear pooling model uses the feature association information for feature fusion to enhance the substantial distinction of features. Compared with the backpropagation (BP) optimization method, BD-ELMNet adopts a layer-by-layer training method without repeated adjustments to effectively learn discriminant features. Experiments involving the application of several methods, including the proposed method, to the MTARSI benchmark demonstrate that the proposed aircraft type recognition method outperforms the state-of-the-art methods.

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4118
Author(s):  
Leonardo F. Arias-Rodriguez ◽  
Zheng Duan ◽  
José de Jesús Díaz-Torres ◽  
Mónica Basilio Hazas ◽  
Jingshui Huang ◽  
...  

Remote Sensing, as a driver for water management decisions, needs further integration with monitoring water quality programs, especially in developing countries. Moreover, usage of remote sensing approaches has not been broadly applied in monitoring routines. Therefore, it is necessary to assess the efficacy of available sensors to complement the often limited field measurements from such programs and build models that support monitoring tasks. Here, we integrate field measurements (2013–2019) from the Mexican national water quality monitoring system (RNMCA) with data from Landsat-8 OLI, Sentinel-3 OLCI, and Sentinel-2 MSI to train an extreme learning machine (ELM), a support vector regression (SVR) and a linear regression (LR) for estimating Chlorophyll-a (Chl-a), Turbidity, Total Suspended Matter (TSM) and Secchi Disk Depth (SDD). Additionally, OLCI Level-2 Products for Chl-a and TSM are compared against the RNMCA data. We observed that OLCI Level-2 Products are poorly correlated with the RNMCA data and it is not feasible to rely only on them to support monitoring operations. However, OLCI atmospherically corrected data is useful to develop accurate models using an ELM, particularly for Turbidity (R2=0.7). We conclude that remote sensing is useful to support monitoring systems tasks, and its progressive integration will improve the quality of water quality monitoring programs.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Liang-Rui Ren ◽  
Ying-Lian Gao ◽  
Jin-Xing Liu ◽  
Junliang Shang ◽  
Chun-Hou Zheng

Abstract Background As a machine learning method with high performance and excellent generalization ability, extreme learning machine (ELM) is gaining popularity in various studies. Various ELM-based methods for different fields have been proposed. However, the robustness to noise and outliers is always the main problem affecting the performance of ELM. Results In this paper, an integrated method named correntropy induced loss based sparse robust graph regularized extreme learning machine (CSRGELM) is proposed. The introduction of correntropy induced loss improves the robustness of ELM and weakens the negative effects of noise and outliers. By using the L2,1-norm to constrain the output weight matrix, we tend to obtain a sparse output weight matrix to construct a simpler single hidden layer feedforward neural network model. By introducing the graph regularization to preserve the local structural information of the data, the classification performance of the new method is further improved. Besides, we design an iterative optimization method based on the idea of half quadratic optimization to solve the non-convex problem of CSRGELM. Conclusions The classification results on the benchmark dataset show that CSRGELM can obtain better classification results compared with other methods. More importantly, we also apply the new method to the classification problems of cancer samples and get a good classification effect.


Sign in / Sign up

Export Citation Format

Share Document