scholarly journals Improving the Quality Degradation of Dynamically Configurable Approximate Multipliers via Data Correlation

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2063
Author(s):  
Fabio Frustaci

In the last few years, dynamically configurable approximate multipliers have been explored to tune the energy-quality trade-off in error-tolerant applications at runtime. Typically, the multiplier accuracy is adjusted by adding a constant correction factor equal to the multiplier mean error to the result, which is found offline assuming a predetermined input distribution. This paper describes a simple approach to update the correction term at runtime, thus adapting it to the actual incoming inputs. It takes advantage of the spatial and/or temporal correlation typically shown by input data in error-tolerant applications, such as image and video processing. When applied to a typical case study implemented with a commercial UTBB FDSOI 28 nm technology, the proposed approach shows an energy reduction of up to 34% at iso-quality and a quality improvement of up to +9 dB, −4× and +35% at iso-energy, in terms of peak-to-noise ratio (PSNR), normalized error distance (NED) and structural similarity index metric (SSIM) respectively, compared to the traditional technique based on a constant correction factor.

Land ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 348
Author(s):  
Marie Perennes ◽  
C. Sylvie Campagne ◽  
Felix Müller ◽  
Philip Roche ◽  
Benjamin Burkhard

Spatially explicit assessments of ecosystem services (ES) potentials are a key component in supporting a sustainable land use management. The ES matrix method is a commonly used approach as it allows for a comparably fast, comprehensible and accessible ES assessment. As it is often based on land use/land cover data (LULC) with no spatial variability, a main critique is that the results fail to assess spatial variability at landscape levels, which limits the reliability of the outputs for spatial planning applications. By using the case study area of Bornhöved in northern Germany, we analyzed three assessment methods that combine expert judgments, LULC data with different resolutions and ecosystem condition indicators, in order to find the required resolution and data for ES assessment and mapping at a local scale. To quantify map discrepancies, we used the structural similarity index (SSIM) and analyzed the differences in local mean, variance and covariance between the maps. We found that using different spatial resolutions led to a relatively small difference in the outcomes, in which regulation and maintenance services are more affected than the other services categories. For most regulation, maintenance and cultural ES, our results indicate that assessments based only on LULC proxies are not suitable for a local quantitative assessment of ES, as they cannot sufficiently cover the spatial heterogeneity of ES capacities that arise from different ecosystem conditions.


Author(s):  
Mahesh Satish Khadtare

This chapter deals with performance analysis of CUDA implementation of an image quality assessment tool based on structural similarity index (SSI). Since it had been initial created at the University of Texas in 2002, the Structural SIMilarity (SSIM) image assessment algorithm has become a valuable tool for still image and video processing analysis. SSIM provided a big giant over MSE (Mean Square Error) and PSNR (Peak Signal to Noise Ratio) techniques because it way more closely aligned with the results that would have been obtained with subjective testing. For objective image analysis, this new technique represents as significant advancement over SSIM as the advancement that SSIM provided over PSNR. The method is computationally intensive and this poses issues in places wherever real time quality assessment is desired. We tend to develop a CUDA implementation of this technique that offers a speedup of approximately 30 X on Nvidia GTX275 and 80 X on C2050 over Intel single core processor.


Frame Interpolation is one of the main stages in video processing. Video coding standards skip some in-between frames for efficient compression and coding. At decoder the common approach to reconstruct the skipped frame using Motion Compensated Frame Interpolation (MCFI)methods. In MCFI, computational complexity is very high as calculation of Block Matching Algorithm, Motion Vectors (MV), Motion Estimation(ME) and Prediction logic of objects in motion between the frames, increases the complexity in MCFI method. A more feasible approach with minimum computational complexity using block level correlation is proposed in this paper. Errored MV at the decoder results in holes, occlusions, blurring and edge deformations in the interpolated frame. This proposal minimizes afore mentioned effects along with minimum complexity. The results are simulated in terms of peak-signal-to-noise-ratio (PSNR) and structural similarity index (SSIM).


2020 ◽  
Vol 25 (2) ◽  
pp. 86-97
Author(s):  
Sandy Suryo Prayogo ◽  
Tubagus Maulana Kusuma

DVB merupakan standar transmisi televisi digital yang paling banyak digunakan saat ini. Unsur terpenting dari suatu proses transmisi adalah kualitas gambar dari video yang diterima setelah melalui proses transimisi tersebut. Banyak faktor yang dapat mempengaruhi kualitas dari suatu gambar, salah satunya adalah struktur frame dari video. Pada tulisan ini dilakukan pengujian sensitifitas video MPEG-4 berdasarkan struktur frame pada transmisi DVB-T. Pengujian dilakukan menggunakan simulasi matlab dan simulink. Digunakan juga ffmpeg untuk menyediakan format dan pengaturan video akan disimulasikan. Variabel yang diubah dari video adalah bitrate dan juga group-of-pictures (GOP), sedangkan variabel yang diubah dari transmisi DVB-T adalah signal-to-noise-ratio (SNR) pada kanal AWGN di antara pengirim (Tx) dan penerima (Rx). Hasil yang diperoleh dari percobaan berupa kualitas rata-rata gambar pada video yang diukur menggunakan metode pengukuran structural-similarity-index (SSIM). Dilakukan juga pengukuran terhadap jumlah bit-error-rate BER pada bitstream DVB-T. Percobaan yang dilakukan dapat menunjukkan seberapa besar sensitifitas bitrate dan GOP dari video pada transmisi DVB-T dengan kesimpulan semakin besar bitrate maka akan semakin buruk nilai kualitas gambarnya, dan semakin kecil nilai GOP maka akan semakin baik nilai kualitasnya. Penilitian diharapkan dapat dikembangkan menggunakan deep learning untuk memperoleh frame struktur yang tepat di kondisi-kondisi tertentu dalam proses transmisi televisi digital.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1269
Author(s):  
Jiabin Luo ◽  
Wentai Lei ◽  
Feifei Hou ◽  
Chenghao Wang ◽  
Qiang Ren ◽  
...  

Ground-penetrating radar (GPR), as a non-invasive instrument, has been widely used in civil engineering. In GPR B-scan images, there may exist random noise due to the influence of the environment and equipment hardware, which complicates the interpretability of the useful information. Many methods have been proposed to eliminate or suppress the random noise. However, the existing methods have an unsatisfactory denoising effect when the image is severely contaminated by random noise. This paper proposes a multi-scale convolutional autoencoder (MCAE) to denoise GPR data. At the same time, to solve the problem of training dataset insufficiency, we designed the data augmentation strategy, Wasserstein generative adversarial network (WGAN), to increase the training dataset of MCAE. Experimental results conducted on both simulated, generated, and field datasets demonstrated that the proposed scheme has promising performance for image denoising. In terms of three indexes: the peak signal-to-noise ratio (PSNR), the time cost, and the structural similarity index (SSIM), the proposed scheme can achieve better performance of random noise suppression compared with the state-of-the-art competing methods (e.g., CAE, BM3D, WNNM).


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 647
Author(s):  
Sameer Alani ◽  
Zahriladha Zakaria ◽  
Tale Saeidi ◽  
Asmala Ahmad ◽  
Muhammad Ali Imran ◽  
...  

Skin cancer is one of the most widespread and fast growing of all kinds of cancer since it affects the human body easily due to exposure to the Sun’s rays. Microwave imaging has shown better outcomes with higher resolution, faster processing time, mobility, and less cutter and artifact effects. A miniaturized elliptical ultra-wideband (UWB) antenna and its semi-spherical array arrangement were used for signal transmission and reception from the defected locations in the breast skin. Several conditions such as various arrays of three, six, and nine antenna elements, smaller tumor, multi-tumors, and skin on a larger breast sample of 30 cm were considered. To assess the ability of the system, a breast shape container with a diameter of 130 mm and height of 60 mm was 3D printed and then filled with fabricated skin and breast fat to perform the experimental investigation. An improved modified time-reversal algorithm (IMTR) was used to recreate 2D images of tumors with the smallest radius of 1.75 mm in any location within the breast skin. The reconstructed images using both simulated and experimental data verified that the system can be a reliable imaging system for skin cancer diagnosis having a high structural similarity index and resolution.


2011 ◽  
Vol 255-260 ◽  
pp. 2072-2076
Author(s):  
Yi Yong Han ◽  
Jun Ju Zhang ◽  
Ben Kang Chang ◽  
Yi Hui Yuan ◽  
Hui Xu

Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we present a new approach using structural similarity index for assessing quality in image fusion. The advantages of our measures are that they do not require a reference image and can be easily computed. Numerous simulations demonstrate that our measures are conform to subjective evaluations and can be able to assess different image fusion methods.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 319
Author(s):  
Yi Wang ◽  
Xiao Song ◽  
Guanghong Gong ◽  
Ni Li

Due to the rapid development of deep learning and artificial intelligence techniques, denoising via neural networks has drawn great attention due to their flexibility and excellent performances. However, for most convolutional network denoising methods, the convolution kernel is only one layer deep, and features of distinct scales are neglected. Moreover, in the convolution operation, all channels are treated equally; the relationships of channels are not considered. In this paper, we propose a multi-scale feature extraction-based normalized attention neural network (MFENANN) for image denoising. In MFENANN, we define a multi-scale feature extraction block to extract and combine features at distinct scales of the noisy image. In addition, we propose a normalized attention network (NAN) to learn the relationships between channels, which smooths the optimization landscape and speeds up the convergence process for training an attention model. Moreover, we introduce the NAN to convolutional network denoising, in which each channel gets gain; channels can play different roles in the subsequent convolution. To testify the effectiveness of the proposed MFENANN, we used both grayscale and color image sets whose noise levels ranged from 0 to 75 to do the experiments. The experimental results show that compared with some state-of-the-art denoising methods, the restored images of MFENANN have larger peak signal-to-noise ratios (PSNR) and structural similarity index measure (SSIM) values and get better overall appearance.


Sign in / Sign up

Export Citation Format

Share Document