scholarly journals Unified Graph Theory-Based Modeling and Control Methodology of Lattice Converters

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2146
Author(s):  
Jingyang Fang

Lattice converters combine the merits of both cascaded-bridge converters and multi-paralleled converters, leading to infinitely large current and voltage capabilities with modularity and scalability as well as small passive components. However, lattice converters suffer from complexity, which poses a serious threat to their widespread adoption. By use of graph theory, this article proposes a unified modeling and control methodology for various lattice converters, resulting in the satisfaction of their key control objectives, including selected inputs/outputs, desired voltages, current sharing, dynamic voltage balancing, and performance optimization. In addition, this article proposes a plurality of novel lattice converter topologies, which complement state-of-the-art options. Simulation and experimental results verify the effectiveness and superiority of the proposed methodology and lattice converters.

2020 ◽  
Author(s):  
Alok N. Menon ◽  
Animesh Chakravarthy ◽  
Benjamin C. Gruenwald ◽  
Tansel Yucelen ◽  
James E. Steck

Author(s):  
Heeseong Kim ◽  
Taehyun Shim ◽  
Byungjun Sung

Abstract This paper investigates an effectiveness of vehicle dynamic control (VDC) system based on torque vectoring technique using in-wheel-motors to improve the performance of articulated vehicle systems. A 10 degree-of-freedom (DOF) articulated vehicle model including a tractor and a single axle trailer has been developed and its responses are validated with commercial vehicle software of Trucksim. This model includes a nonlinear tire model (MF tire), a hydraulic damping at the hitch, and a traction system using in-wheel-motors at the trailer axle. In this paper, a yaw control system is developed to track the reference yaw rate with application of yaw moment at the trailer axle using torque distribution of in-wheel-motors. The effectiveness of the proposed control system is validated through simulation of sinusoidal steering maneuver on high mu and slippery road conditions. The simulation results show that in-wheel-motors can improve safety and performance of articulate vehicle systems.


Author(s):  
Kevin B. Fite ◽  
Michael Goldfarb

This paper presents an architecture and control methodology for a multi-degree-of-freedom teleoperator system. The approach incorporates impedance control of the telemanipulator pair and formulates the system as a single feedback loop encompassing the human operator, telemanipulator, and remote environment. In so doing, multivariable Nyquist-like techniques are used to design compensation for enhanced stability robustness and performance. A measure of the transparency exhibited by the multivariable teleoperator system is attained using matrix singular values. The approach is experimentally demonstrated on a three degree-of-freedom scaled telemanipulator pair with a highly coupled environment. Using direct measurement of the power delivered to the operator to assess the system’s stability robustness, along with the proposed measure of multivariable transparency, the loop-shaping compensation is shown to improve the stability robustness by a factor of almost two and the transparency by more than a factor of five.


2018 ◽  
Vol 66 (4) ◽  

The restorative qualities of sleep are fundamentally the basis of the individual athlete’s ability to recover and perform, and to optimally be able to challenge and control the effects of exercise regimes in high performance sport. Research consistently shows that a large percentage of the population fails to obtain the recommended 7–9 hours of sleep per night [17]. Moreover, recent years’ research has found that athletes have a high prevalence of poor sleep quality [6]. Given its implications on the recovery process, sleep affects the quality of the athlete’s training and outcome of competitions. Although an increasing number of recovery aids (such as cold baths, anti-inflammatory agents, high protein intake etc.) are available, recent years research show the important and irreplaceable role of sleep and that no recovery method can compensate for the lack of sleep. Every facet of an athlete’s life has the capacity to either create or take out energy, contribute to the overall stress level and subsequently the level of both recovery and performance. While traditional approaches to performance optimization focus simply on the physical stressors, this overview will highlight the benefits and the basic principles of sleep, its relation to recovery and performance, and provide input and reflect on what to consider when working with development and maintenance of athletic performance.


2014 ◽  
Vol 106 ◽  
pp. 12-20 ◽  
Author(s):  
Yao Sun ◽  
Weixia Liu ◽  
Mei Su ◽  
Xing Li ◽  
Hui Wang ◽  
...  

2020 ◽  
Vol 67 (10) ◽  
pp. 8910-8920
Author(s):  
Marco Liserre ◽  
Vivek Raveendran ◽  
Markus Andresen

Sign in / Sign up

Export Citation Format

Share Document