scholarly journals Theory and Design of a Flexible Two-Stage Wideband Wilkinson Power Divider

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2168
Author(s):  
Antra Saxena ◽  
Mohammad Hashmi ◽  
Deepayan Banerjee ◽  
Muhammad Akmal Chaudhary

This article presents the design scheme of a wideband Wilkinson Power Divider (WPD) with two-stage architecture utilizing quarter-wave transmission lines and short-circuit stubs. The bandwidth of the proposed WPD is flexible and can be controlled using the design parameters. The proposed design achieves excellent isolation between output ports in addition good in-band performance. The analysis of the proposed circuit results in a simplified transfer function which is then equated with a standard band-pass transfer function to determine the parameters of transmission lines, stub’s impedances, and the value of the isolation resistors. Furthermore, it is also demonstrated that a simple alteration in the proposed circuit enables the design of a wideband DC isolated WPD that maintains a good in-band and isolation performance. A number of case studies have been included to highlight the flexibility of the proposed design. Two distinct prototypes are developed on different boards to demonstrate the wideband performance of the proposed design. An excellent agreement between the experimental and measured results for both the designs over a wide band including very good isolation between ports validate the proposed design.

2019 ◽  
Vol 2019 ◽  
pp. 1-4
Author(s):  
Soonwoo Park ◽  
Heeje Han ◽  
Chanwoo Kim ◽  
Jaemin Bae ◽  
Youngki Cho ◽  
...  

A band-selective power divider is demonstrated for the first time. By replacing lumped element right-handed (RH) and left-handed (LH) transmission lines (TL) in a conventional Wilkinson power divider, it is possible to achieve both power division and filtering simultaneously. By utilizing the positive phase propagation property of an RHTL, which works as a low-pass filter, and the negative phase propagation property of an LHTL, which works as a high-pass filter, the band-selective quarter-wave sections required to construct a Wilkinson power divider are implemented. The fabricated circuit shows an insertion loss in the range 1.7 dB–2.5 dB in the passband, with the circuit dimensions of merely 12 mm by 10 mm.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 169-176
Author(s):  
Saeedeh Lotfi ◽  
Saeed Roshani ◽  
Sobhan Roshani ◽  
Maryam Shirzadian Gilan

AbstractIn this paper, a new Wilkinson Power Divider ‎‎(WPD) using open and short stubs is proposed. ‎Open and short stubs are utilized instead of 1/4 wave transmission lines in initial ‎structure to achieve harmonics suppression. The proposed WPD is designed for ‎operational frequency of 0.9 GHz and creates 3 transmission ‎zeros at 1.8 GHz, 2.7 GHz and 3.6 GHz, for suppressing second, third and fourth harmonics. The proposed WPD has been fabricated and the ‎measurement results are in good accordance with simulation results. The designed ‎WPD has a 22 % fractional bandwidth with 0.1 dB insertion loss.‎


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Duolong Wu ◽  
Adriana Serban ◽  
Magnus Karlsson ◽  
Shaofang Gong

A three-port power divider consisting of a directional coupler, a Wilkinson power divider, and two transmission lines connected to them is proposed. Theoretical analysis reveals that highly unequal power division can be achieved by a feedback mechanism of two transmission lines along with the coupling coefficient of the directional coupler and the power division ratio of the Wilkinson power divider. The three-port power divider inherits the performance characteristics of high isolation, low reflection coefficients at all ports, and the minimum number of components. The proposed power divider is designed at 5.8 GHz and fabricated and evaluated through measurements. It demonstrates that electromagnetic simulation results are in good agreement with theoretical prediction and measurement results. The three-port power divider is compact in the planar form, so it can be easily integrated into radio frequency front ends.


Sign in / Sign up

Export Citation Format

Share Document