scholarly journals A Novel Inductor for Stabilizing the DC Link of Adjustable Speed Drive

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2401
Author(s):  
Qian Wang ◽  
Bingyang Luo ◽  
Jun Wang ◽  
Zhe Kong ◽  
Feng Liu

The DC-link filter which includes a magnetic inductor and a storage capacitor is one of the key parts of adjustable speed drives in the market. It significantly affects the stability, reliability, and power density of the motor-drive system. This paper proposes a novel, variable active inductor to improve the performance of DC links in terms of stability, reliability, size, and cost. In contrast to conventional DC-link magnetic inductors, the variable active inductor is made of power electronic circuits, including active switches, passive filters, and smart controllers, which no longer rely on magnetic material. The demonstration shows that the inductor can emulate the electrical characteristics of the magnetic inductor for filtering harmonics and stabilizing the DC link, meanwhile representing a smaller size, lighter weight, and lower cost compared with a conventional one. Furthermore, this paper proposes a variable inductance control method which is able to adaptively tune the inductance value with the operating conditions of the drive system. The DC link can be stabilized, and high performance can be maintained in both balanced and unbalanced grid voltage conditions. A case study of the proposed variable inductor in a motor drive with a three-phase diode-bridge rectifier as the front end is discussed. Experimental results are given to verify the functionality and effectiveness of the proposed variable inductor.

Author(s):  
Cuifeng Shen ◽  
Hanhua Yang

Background: A multi-motor synchronous drive control system is widely used in many fields, such as electric vehicle drive, paper making, and printing. Methods: On the basis of the optimized structure of ADRC, a fuzzy first-order active disturbance rejection controller was developed. Double channels compensation of extended state observer was employed to estimate and compensate the total disturbances, and an approximate linearization and deterministic system was obtained. As the parameters of ADRC are adjusted online by a fuzzy controller, the performance of the controller is effectively improved. Results: Based on the SIMATIC S7-300 induction motor control experimental platform, the performances of anti-interference and tracking performance are tested. Conclusion: The actual experimental results indicated that compared with PID control, induction motor drive system controlled by fuzzy ADRC has higher dynamic and static status and following performances and stronger anti-interference abilities.


2015 ◽  
Vol 9 (2) ◽  
pp. 107-116 ◽  
Author(s):  
Shao‐Kai Tseng ◽  
Chih‐Chien Tseng ◽  
Tian‐Hua Liu ◽  
Jui‐Ling Chen

1988 ◽  
Vol 24 (3) ◽  
pp. 479-486 ◽  
Author(s):  
H. Hosoda ◽  
S. Tatara ◽  
R. Kurosawa ◽  
H. Hakata ◽  
K. Doi

Sign in / Sign up

Export Citation Format

Share Document