scholarly journals Output-Based Tracking Control for a Class of Car-like Mobile Robot Subject to Slipping and Skidding Using Event-Triggered Mechanism

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2886
Author(s):  
Changshun Wang ◽  
Dan Wang ◽  
Weigang Pan ◽  
Huang Zhang

This paper presents an output-based tracking controller for a class of car-like mobile robot (CLMR) subject to slipping and skidding. The slipping and skidding are regarded as external disturbances, and an event-triggered extended state observer (ET-ESO) is utilized to recover the velocities as well as to estimate the uncertainties and disturbances. The constrained longitudinal velocity is established, conforming to the traffic flow theory on the kinematic level. The velocity control law and heading angle control law are developed on the dynamic level, respectively. The input to state stability (ISS) of the closed-loop system is analyzed via cascade theory. Simulation results are given to demonstrate the effectiveness of the proposed tracking controller for CLMR subject to slipping and skidding.

2019 ◽  
Vol 8 (3) ◽  
pp. 808-817
Author(s):  
Mustapha Muhammad ◽  
Amir A. Bature ◽  
Umar Zangina ◽  
Salinda Buyamin ◽  
Anita Ahmad ◽  
...  

This paper presents the design of a fuzzy tracking controller for balancing and velocity control of a Two-Wheeled Inverted Pendulum (TWIP) mobile robot based on its Takagi-Sugino (T-S) fuzzy model, fuzzy Lyapunov function and non-parallel distributed compensation (non-PDC) control law. The T-S fuzzy model of the TWIP mobile robot was developed from its nonlinear dynamical equations of motion. Stabilization conditions in a form of linear matrix inequalities (LMIs) were derived based on the T-S fuzzy model of the TWIP mobile robot, a fuzzy Lyapunov function and a non-PDC control law. Based on the derived stabilization conditions and the T-S fuzzy model of the TWIP mobile robot, a state feedback velocity tracking controller was then proposed for the TWIP mobile robot. The balancing and velocity tracking performance of the proposed controller was investigated via simulations. The simulation result shows the effectiveness of the proposed control scheme.


Author(s):  
Guoqing Zhang ◽  
Shen Gao ◽  
Jiqiang Li ◽  
Weidong Zhang

This study investigates the course-tracking problem for the unmanned surface vehicle in the presence of constraints of the actuator faults, control gain uncertainties, and environmental disturbance. A novel event-triggered robust neural control algorithm is proposed by fusing the robust neural damping technique and the event-triggered input mechanism. In the algorithm, no prior information of the system model about the unknown yawing dynamic parameters and unknown external disturbances is required. The transmission burden between the controller and the actuator could be relieved. Moreover, the control gain-related uncertainties and the unknown actuator faults are compensated through two updated online adaptive parameters. Sufficient effort has been made to verify the semi-global uniform ultimate bounded stability for the closed-loop system based on Lyapunov stability theory. Finally, simulation results are presented to illustrate the effectiveness and superiority of the proposed algorithm.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Zhao Jing Wu ◽  
Yong Hui Liu

The problem of exponential stabilization for nonholonomic mobile robot with dependent stochastic disturbance of heading angle is considered in this paper. An integrator backstepping controller based on state-scaling method is designed such that the state of the closed-loop system, starting from a nonzero initial heading angle, is regulated to the origin with exponential rate in almost surely sense. For zero initial heading angle, a controller is designed such that the heading angle is driven away from zero while the position variables are bounded in a neighborhood of the origin. Combing the above two cases results in a switching controller such that for any initial condition the configuration of the robot can be regulated to the origin with exponential rate. The efficiency of the proposed method is demonstrated by a detailed simulation.


Author(s):  
Ai-Min Wang ◽  
Jian-Ning Li

This article focuses on the design of event-triggered asynchronous [Formula: see text] fault-tolerant controller for Markov jump system subject to actuator faults and external disturbances. The asynchronization phenomenon not only occurs between the controlled system and controller but also exists between the controlled system and faulty actuator, which are portrayed as two corresponding hidden Markov models. Moreover, a mode-dependent event-triggered mechanism is introduced to facilitate network resources utilization. Then, by introducing mode-dependent Lyapunov-Krasovskii functional, a sufficient condition is obtained to guarantee that the closed-loop system is randomly mean square stable with [Formula: see text] performance. Finally, two numerical examples are employed to illustrate the effectiveness of the proposed synthesis scheme.


1999 ◽  
Vol 121 (1) ◽  
pp. 121-126 ◽  
Author(s):  
A. Astolfi

In the present work the problem of exponential stabilization of the kinematic and dynamic model of a simple wheeled mobile robot is addressed and solved using a discontinuous, bounded, time invariant, state feedback control law. The properties of the closed-loop system are studied in detail and its performance in presence of model errors and noisy measurements are evaluated and discussed.


2008 ◽  
Vol 18 (05) ◽  
pp. 443-452 ◽  
Author(s):  
MEIQIN LIU ◽  
SENLIN ZHANG

A unified neural network model termed standard neural network model (SNNM) is advanced. Based on the robust L2 gain (i.e. robust H∞ performance) analysis of the SNNM with external disturbances, a state-feedback control law is designed for the SNNM to stabilize the closed-loop system and eliminate the effect of external disturbances. The control design constraints are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms (e.g. interior-point algorithms) to determine the control law. Most discrete-time recurrent neural network (RNNs) and discrete-time nonlinear systems modelled by neural networks or Takagi and Sugeno (T–S) fuzzy models can be transformed into the SNNMs to be robust H∞ performance analyzed or robust H∞ controller synthesized in a unified SNNM's framework. Finally, some examples are presented to illustrate the wide application of the SNNMs to the nonlinear systems, and the proposed approach is compared with related methods reported in the literature.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Dianguo Cao ◽  
Jiaqian Chen

This study investigates the global output feedback stabilization problem for one type of the nonholonomic system with nonvanishing external disturbances. An extended state observer (ESO) is constructed in order to estimate the external disturbance and unmeasurable system states, in which the external disturbance term is seen as a general state. Thus, a new generalized error dynamic system is obtained. Accordingly, a disturbance rejection controller is designed by making use of the backstepping technique. A control law is given to ensure that all the signals in the closed-loop system are globally bounded, while the system states converge to an equilibrium point. The simulation example is proposed to verify that the control algorithm is effective.


2021 ◽  
pp. 107754632098794
Author(s):  
Meysam Azhdari ◽  
Tahereh Binazadeh

This article studies the uniformly ultimately bounded output tracking problem of uncertain nonlinear sandwich systems with sandwiched dead-zone nonlinearity in the presence of some practical constraints such as nonsymmetric input saturation, model uncertainties, time-varying external disturbances, and unknown parameters. Due to the existence of both dead-zone and saturation nonlinearities, the design process is more complicated; therefore, to solve the design complexities, the designing process is divided into two phases. The proposed method leads to output tracking with acceptable accuracy. Moreover, all signals in the closed-loop system are ultimately bounded. Simulation results illustrate the applicability and effectiveness of the proposed method by its application on two practical sandwich systems (robotic system and electrohydraulic servo press system).


Author(s):  
Qijia Yao

Space manipulator is considered as one of the most promising technologies for future space activities owing to its important role in various on-orbit serving missions. In this study, a robust finite-time tracking control method is proposed for the rapid and accurate trajectory tracking control of an attitude-controlled free-flying space manipulator in the presence of parametric uncertainties and external disturbances. First, a baseline finite-time tracking controller is designed to track the desired position of the space manipulator based on the homogeneous method. Then, a finite-time disturbance observer is designed to accurately estimate the lumped uncertainties. Finally, a robust finite-time tracking controller is developed by integrating the baseline finite-time tracking controller with the finite-time disturbance observer. Rigorous theoretical analysis for the global finite-time stability of the whole closed-loop system is provided. The proposed robust finite-time tracking controller has a relatively simple structure and can guarantee the position and velocity tracking errors converge to zero in finite time even subject to lumped uncertainties. To the best of the authors’ knowledge, there are really limited existing controllers can achieve such excellent performance under the same conditions. Numerical simulations illustrate the effectiveness and superiority of the proposed control method.


2015 ◽  
Vol 66 (5) ◽  
pp. 270-276 ◽  
Author(s):  
Fouad Haouari ◽  
Bali Nourdine ◽  
Mohamed Segir Boucherit ◽  
Mohamed Tadjine

AbstractA new robust control procedure for robot manipulators is proposed in this paper. Coefficients diagram method controllers CDM and Backstepping methodology are combined to create the novel control law. Two steps of backstepping on the resulting system are used to design a nonlinear CDM-Backstepping controller. Simulations on a PUMA robot including external disturbances, parametric uncertainties and noises are performed to show the effectiveness and feasibility of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document