scholarly journals Novel Motor-Kinetic-Energy-Based Power Pulsation Buffer Concept for Single-Phase-Input Electrolytic-Capacitor-Less Motor-Integrated Inverter System

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 280
Author(s):  
Michael Haider ◽  
Dominik Bortis ◽  
Grayson Zulauf ◽  
Johann W. Kolar ◽  
Yasuo Ono

The motor integration of singe-phase-supplied Variable-Speed Drives (VSDs) is prevented by the significant volume, short lifetime, and operating temperature limit of the electrolytic capacitors required to buffer the pulsating power grid. The DC-link energy storage requirement is eliminated by using the kinetic energy of the motor as a buffer. The proposed concept is called the Motor-Integrated Power Pulsation Buffer (MPPB), and a control technique and structure are detailed that meet the requirements for nominal and faulted operation with a simple reconfiguration of existing controller blocks. A 7.5 KW, motor-integrated hardware demonstrator validated the proposed MPPB concept and loss models for a scroll compressor drive used in auxiliary railway applications. The MPPB drive with a front-end CISPR 11/Class A EMI filter, PFC rectifier stage, and output-side inverter stage achieved a power density of 0.91 KW L−1 (15 W in−3). The grid-to-motor-shaft efficiency exceeded 90% for all loads over 5 kW or 66% of nominal load, with a worst-case loss penalty over a conventional system of only 17%.

Author(s):  
Wei Yao ◽  
Zhaoming Qian

In this paper, an improved load sharing control scheme is presented, which is able to improve the transient response and power sharing accuracy of parallel-connected inverters used in microgrid. It also shows how the improved droop method can be easily adapted to account for the operation of parallel-connected inverters, providing good performance under the variation and disturbance of loads, as well as achieving good steady-state objectives and transient performance. Two DSP-based single-phase Microgrid inverters are designed and implemented. Simulation and experimental results are all reported, confirming the validity of the proposed control technique.


Author(s):  
Peethala Rajiv Roy ◽  
P. Parthiban ◽  
B. Chitti Babu

Abstract This paper deals with implementation of a single-phase three level converter system under low voltage condition. The frequency of the switches is made constant and involves change in ${t_{on}}$ and ${t_{off}}$ duration. For this condition the pulse width modulation control scheme for a single phase three level rectifier is developed to improve the power quality. The hysteresis current control technique is adopted to bring forth three-level PWM on the dc side of the bridge rectifier and to achieve high power factor and low harmonic distortion. Based on the proposed control scheme, the line current is driven to follow the sinusoidal current command which is in phase with the supply voltage. By using three-level voltage pattern the blocking voltage of each power device is clamped to half of the dc link voltage. The simulation and experimental results of 20W converter under low input voltage condition are shown to verify the circuit performance. Open loop simulation and hardware tests are implemented by applying a low voltage of 15 V(rms) on the input side.


2015 ◽  
Vol 66 (5) ◽  
pp. 287-291 ◽  
Author(s):  
Vojtech Blahnik ◽  
Jakub Talla ◽  
Zdenek Peroutka

Abstract The paper deals with a control of current source with an LCL output filter. The controlled current source is realized as a single-phase inverter and output LCL filter provides low ripple of output current. However, systems incorporating LCL filters require more complex control strategies and there are several interesting approaches to the control of this type of converter. This paper presents the inverter control algorithm, which combines model based control with a direct current control based on resonant controllers and single-phase vector control. The primary goal is to reduce the current ripple and distortion under required limits and provides fast and precise control of output current. The proposed control technique is verified by measurements on the laboratory model.


Sign in / Sign up

Export Citation Format

Share Document