scholarly journals Fast and Accurate Memory Simulation by Integrating DRAMSim2 into McSimA+

Electronics ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 152 ◽  
Author(s):  
Konstantin Bick ◽  
Duy Nguyen ◽  
Hyuk-Jae Lee ◽  
Hyun Kim

Computer architecture simulators play a crucial role in the verification of a new system’s design. However, a single simulator may not be sufficient in covering detailed modeling of the entire system, thereby lacking in the simulation of a specific functionality under investigation. In this case, combining two simulators is necessary to compensate for the drawbacks of a single simulator. This paper proposes the integration of DRAMSim2, a simulator that thoroughly models DDR-SDRAM main memory architecture, into the application-level+ simulator McSimA+. The challenges of achieving an efficient integration, especially the integration of a cycle-accurate simulator into an event-driven environment, are addressed. The combined simulator achieves high accuracy due to cycle-accurate simulation while maintaining high speed and flexibility of the event-driven application-level+ simulator. The new simulator’s overall system performance and the accuracy of the newly-integrated power model are verified against the gem5 simulator.

2014 ◽  
Vol 526 ◽  
pp. 347-350 ◽  
Author(s):  
Qiong Ying Lv ◽  
Kun Liu

This article describes an approach based on FPGA technology and application speed galvanometer technology for high-speed moving objects in real-time and accurate laser ranging system platform design. Laser Ranging has high accuracy, good collimation, good anti-jamming Intuit points, and use high integration, operation speed of FPGA chip for data acquisition and processing.Speed galvanometer technology to ensure the entire system platform can continuously measure the distance to the high speed moving object information. The entire system ensures that the measured object in rapid motion state, the measured data in real time and accuracy.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Rabiu Imam Sabitu ◽  
Nafizah Goriman Khan ◽  
Amin Malekmohammadi

AbstractThis report examines the performance of a high-speed MDM transmission system supporting four nondegenerate spatial modes at 10 Gb/s. The analysis adopts the NRZ modulation format to evaluate the system performance in terms of a minimum power required (PN) and the nonlinear threshold power (PTH) at a BER of 10−9. The receiver sensitivity, optical signal-to-noise ratio, and the maximum transmission distance were investigated using the direct detection by employing a multimode erbium-doped amplifier (MM-EDFA). It was found that by properly optimizing the MM-EDFA, the system performance can significantly be improved.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1475
Author(s):  
Masahiro Okamoto ◽  
Kazuya Murao

With the spread of devices equipped with touch panels, such as smartphones, tablets, and laptops, the opportunity for users to perform touch interaction has increased. In this paper, we constructed a device that generates multi-touch interactions to realize high-speed, continuous, or hands-free touch input on a touch panel. The proposed device consists of an electrode sheet printed with multiple electrodes using conductive ink and a voltage control board, and generates eight multi-touch interactions: tap, double-tap, long-press, press-and-tap, swipe, pinch-in, pinch-out, and rotation, by changing the capacitance of the touch panel in time and space. In preliminary experiments, we investigated the appropriate electrode size and spacing for generating multi-touch interactions, and then implemented the device. From the evaluation experiments, it was confirmed that the proposed device can generate multi-touch interactions with high accuracy. As a result, tap, press-and-tap, swipe, pinch-in, pinch-out, and rotation can be generated with a success rate of 100%. It was confirmed that all the multi-touch interactions evaluated by the proposed device could be generated with high accuracy and acceptable speed.


2006 ◽  
Vol 18 (12) ◽  
pp. 2959-2993 ◽  
Author(s):  
Eduardo Ros ◽  
Richard Carrillo ◽  
Eva M. Ortigosa ◽  
Boris Barbour ◽  
Rodrigo Agís

Nearly all neuronal information processing and interneuronal communication in the brain involves action potentials, or spikes, which drive the short-term synaptic dynamics of neurons, but also their long-term dynamics, via synaptic plasticity. In many brain structures, action potential activity is considered to be sparse. This sparseness of activity has been exploited to reduce the computational cost of large-scale network simulations, through the development of event-driven simulation schemes. However, existing event-driven simulations schemes use extremely simplified neuronal models. Here, we implement and evaluate critically an event-driven algorithm (ED-LUT) that uses precalculated look-up tables to characterize synaptic and neuronal dynamics. This approach enables the use of more complex (and realistic) neuronal models or data in representing the neurons, while retaining the advantage of high-speed simulation. We demonstrate the method's application for neurons containing exponential synaptic conductances, thereby implementing shunting inhibition, a phenomenon that is critical to cellular computation. We also introduce an improved two-stage event-queue algorithm, which allows the simulations to scale efficiently to highly connected networks with arbitrary propagation delays. Finally, the scheme readily accommodates implementation of synaptic plasticity mechanisms that depend on spike timing, enabling future simulations to explore issues of long-term learning and adaptation in large-scale networks.


Author(s):  
Hubertus v. Stein ◽  
Heinz Ulbrich

Abstract Due to the elasticity of the links in modern high speed mechanisms, increasing operating speeds often lead to undesirable vibrations, which may render a required accuracy unattainable or, even worse, lead to a failure of the whole process. The dynamic effects e.g. may lead to intolerable deviations from the reference path or even to the instability of the system. Instead of suppressing the vibration by a stiffer design, active control methods may greatly improve the system performance and lead the way to a reduction of the mechanism’s weight. We investigate a four-bar-linkage mechanism and show that by introducing an additional degree of freedom for a controlled actuator and providing a suitable control strategy, the dynamically induced inaccuracies can be substantially reduced. The modelling of the four-bar-linkage mechanism as a hybrid multi body system and the modelling of the complete system (including the actuator) is briefly explained. From the combined feedforward-feedback optimal control approach presented in (v. Stein, Ulbrich, 1998) a time-varying output control law is derived that leads to a very good system performance for this linear discrete time-varying system. The experimental results show the effectiveness of the applied control strategy.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1948 ◽  
Author(s):  
Fu-Cheng Wang ◽  
Yi-Shao Hsiao ◽  
Yi-Zhe Yang

This paper discusses the optimization of hybrid power systems, which consist of solar cells, wind turbines, fuel cells, hydrogen electrolysis, chemical hydrogen generation, and batteries. Because hybrid power systems have multiple energy sources and utilize different types of storage, we first developed a general hybrid power model using the Matlab/SimPowerSystemTM, and then tuned model parameters based on the experimental results. This model was subsequently applied to predict the responses of four different hybrid power systems for three typical loads, without conducting individual experiments. Furthermore, cost and reliability indexes were defined to evaluate system performance and to derive optimal system layouts. Finally, the impacts of hydrogen costs on system optimization was discussed. In the future, the developed method could be applied to design customized hybrid power systems.


Sign in / Sign up

Export Citation Format

Share Document