scholarly journals A Heuristics-Based Policy to Reduce the Curtailment of Solar-Power Generation Empowered by Energy-Storage Systems

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 349 ◽  
Author(s):  
Robert Basmadjian ◽  
Hermann Meer

Renewable energy sources, on one hand, are environmentally friendly, but on the other, they suffer from volatility in power generation, which endangers power-grid stability. A viable solution to circumvent the intermittent behavior of renewables is the usage of energy-storage systems. In this paper, we study the energy management of a proof-of-concept system consisting of solar panels, energy-storage systems, a power grid, and household loads. Using neural networks, we identify the most relevant parameters impacting the power generation of solar panels, and then train the corresponding network to derive forecasts. We also go one step further, and propose a heuristics-based energy-management policy for the purpose of reducing curtailments. We show that our proposed policy outperforms the naive policy by 8%, which does not consider any power-generation forecasts.

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1666
Author(s):  
Abdellatif Elmouatamid ◽  
Radouane Ouladsine ◽  
Mohamed Bakhouya ◽  
Najib El kamoun ◽  
Khalid Zine-Dine

The integration of renewable energy sources (RES) was amplified, during the past decades, in order to tackle the challenges related to energy demands and CO2 increases. Recently, many initiatives have been taken by promoting the deployment and the usage of micro-grids (MG) in buildings, as decentralized systems, for energy production. However, the variable nature of RESs and the limited size of energy storage systems require the deployment of adaptive control strategies for efficient energy balance. In this paper, a generalized predictive control (GPC) strategy is introduced for energy management (EM) in MG systems. Its main objective is to efficiently connect the electricity generators and consumers in order to predict the most suitable actions for energy flow management. In fact, based on energy production and consumption profiles as well as the availability of energy storage systems, the proposed EM will be able to select the best suitable energy source for supplying the building’s loads. It will efficiently manage the usage of energy storage and the utility grid while maximizing RESs power generation. Simulations have been conducted, using real-sitting scenarios, and results are presented to validate the proposed predictive control approach by showing its effectiveness for MG systems control.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2791
Author(s):  
Kwang-Su Na ◽  
Jeong Lee ◽  
Jun-Mo Kim ◽  
Yoon-Seong Lee ◽  
Junsin Yi ◽  
...  

This paper investigates the operation of each power conversion system (PCS) for efficient energy management systems (EMSs) of microgrids (MGs). When MGs are linked to renewable energy sources (RESs), the reduction in power conversion efficiency can be minimized. Furthermore, energy storage systems (ESSs) are utilized to manage the surplus power of RESs. Thus, the present work presents a method to minimize the use of the existing power grid and increase the utilization rate of energy generated through RESs. To minimize the use of the existing power grid, a PCS operation method for photovoltaics (PV) and ESS used in MGs is proposed. PV, when it is directly connected as an intermittent energy source, induces voltage fluctuations in the distribution network. Thus, to overcome this shortcoming, this paper utilizes a system that connects PV and a distributed energy storage system (DESS). A PV-DESS integrated module is designed and controlled for tracking constant power. In addition, the DESS serves to compensate for the insufficient power generation of PV. The main energy storage systems (MESSs) used in MGs affect all aspects of the power management in the system. Because MGs perform their operations based on the capacity of the MESS, a PCS designed with a large capacity is utilized to stably operate the system. Because the MESS performs energy management through operations under various load conditions, it must have constant efficiency under all load conditions. Therefore, this paper proposes a PCS operation algorithm with constant efficiency for the MESS. Utilizing the operation algorithm of each PCS, this paper describes the efficient energy management of the MG and further proposes an algorithm for operating the existing power grid at the minimum level.


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2503
Author(s):  
Paulo Rotella Junior ◽  
Luiz Célio Souza Rocha ◽  
Sandra Naomi Morioka ◽  
Ivan Bolis ◽  
Gianfranco Chicco ◽  
...  

Sources such as solar and wind energy are intermittent, and this is seen as a barrier to their wide utilization. The increasing grid integration of intermittent renewable energy sources generation significantly changes the scenario of distribution grid operations. Such operational challenges are minimized by the incorporation of the energy storage system, which plays an important role in improving the stability and the reliability of the grid. This study provides the review of the state-of-the-art in the literature on the economic analysis of battery energy storage systems. The paper makes evident the growing interest of batteries as energy storage systems to improve techno-economic viability of renewable energy systems; provides a comprehensive overview of key methodological possibilities for researchers interested in economic analysis of battery energy storage systems; indicates the need to use adequate economic indicators for investment decisions; and identifies key research topics of the analyzed literature: (i) photovoltaic systems with battery energy storage systems for residential areas, (ii) comparison between energy storage technologies, (iii) power quality improvement. The last key contribution is the proposed research agenda.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3296
Author(s):  
Carlos García-Santacruz ◽  
Luis Galván ◽  
Juan M. Carrasco ◽  
Eduardo Galván

Energy storage systems are expected to play a fundamental part in the integration of increasing renewable energy sources into the electric system. They are already used in power plants for different purposes, such as absorbing the effect of intermittent energy sources or providing ancillary services. For this reason, it is imperative to research managing and sizing methods that make power plants with storage viable and profitable projects. In this paper, a managing method is presented, where particle swarm optimisation is used to reach maximum profits. This method is compared to expert systems, proving that the former achieves better results, while respecting similar rules. The paper further presents a sizing method which uses the previous one to make the power plant as profitable as possible. Finally, both methods are tested through simulations to show their potential.


Author(s):  
Thales Augusto Fagundes ◽  
Guilherme Henrique Favaro Fuzato ◽  
Plinio Goncalves Bueno Ferreira ◽  
Mauricio Biczkowski ◽  
Ricardo Quadros Quadros Machado

Sign in / Sign up

Export Citation Format

Share Document