scholarly journals Cost Minimization Energy Control Including Battery Aging for Multi-Source EV Charging Station

Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 31 ◽  
Author(s):  
Umberto Abronzini ◽  
Ciro Attaianese ◽  
Matilde D’Arpino ◽  
Mauro Di Monaco ◽  
Giuseppe Tomasso

A Multi-Source Electric Vehicle Charging Station (MS-EVCS) is a local entity that combines the grid energy with Distributed Energy Resources (DERs) with the aim of reducing the grid impact due to electric vehicles (EVs) charging events. The integration of stationary and in-vehicle Energy Storage Systems (ESSs) in MS-EVCSs has gained increasing interest thanks to the possibility of storing energy at off-peak hours to be made available at peak-hours. However, the ESS technology and the vehicle-to-grid (V2G) concept show several issues due to cost, battery life cycle, reliability, and management. The design of the MS-EVCS energy management system is of primary importance to guarantee the optimal usage of the available resources and to enhance the system benefits. This study presents a novel energy management strategy for Real-Time (RT) control of MS-EVCS considering DERs, stationary ESS, and V2G. The proposed energy management control allows defining the MS-EVCS control policy solving several cascaded-problems with the aim of achieving the minimum operating cost when the battery degradation and the stochastic nature of the sources are considered. The key feature of the proposed methodology is the lower computational effort with respect to traditional optimal control methodologies while achieving the same optimal solution.

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 537
Author(s):  
Rittichai Liemthong ◽  
Chitchai Srithapon ◽  
Prasanta K. Ghosh ◽  
Rongrit Chatthaworn

It is well documented that both solar photovoltaic (PV) systems and electric vehicles (EVs) positively impact the global environment. However, the integration of high PV resources into distribution networks creates new challenges because of the uncertainty of PV power generation. Additionally, high power consumption during many EV charging operations at a certain time of the day can be stressful for the distribution network. Stresses on the distribution network influence higher electricity tariffs, which negatively impact consumers. Therefore, a home energy management system is one of the solutions to control electricity consumption to reduce electrical energy costs. In this paper, a meta-heuristic-based optimization of a home energy management strategy is presented with the goal of electrical energy cost minimization for the consumer under the time-of-use (TOU) tariffs. The proposed strategy manages the operations of the plug-in electric vehicle (PEV) and the energy storage system (ESS) charging and discharging in a home. The meta-heuristic optimization, namely a genetic algorithm (GA), was applied to the home energy management strategy for minimizing the daily electrical energy cost for the consumer through optimal scheduling of ESS and PEV operations. To confirm the effectiveness of the proposed methodology, the load profile of a household in Udonthani, Thailand, and the TOU tariffs of the provincial electricity authority (PEA) of Thailand were applied in the simulation. The simulation results show that the proposed strategy with GA optimization provides the minimum daily or net electrical energy cost for the consumer. The daily electrical energy cost for the consumer is equal to 0.3847 USD when the methodology without GA optimization is used, whereas the electrical energy cost is equal to 0.3577 USD when the proposed methodology with GA optimization is used. Therefore, the proposed optimal home energy management strategy with GA optimization can decrease the daily electrical energy cost for the consumer up to 7.0185% compared to the electrical energy cost obtained from the methodology without GA optimization.


Author(s):  
Xinyou Lin ◽  
Qigao Feng ◽  
Liping Mo ◽  
Hailin Li

This study presents an adaptive energy management control strategy developed by optimally adjusting the equivalent factor (EF) in real-time based on driving pattern recognition (DPR), to guarantee the plug-in hybrid electric vehicle (PHEV) can adapt to various driving cycles and different expected trip distances and to further improve the fuel economy performance. First, the optimization model for the EF with the battery state of charge (SOC) and trip distance were developed based on the equivalent consumption minimization strategy (ECMS). Furthermore, a methodology of extracting the globally optimal EF model from genetic algorithm (GA) solution is proposed for the design of the EF adaptation strategy. The EF as the function of trip distances and SOC in various driving cycles is expressed in the form of map that can be applied directly in the corresponding driving cycle. Finally, the algorithm of DPR based on learning vector quantization (LVQ) is established to identify the driving mode and update the optimal EF. Simulation and hardware-in-loop experiments are conducted on synthesis driving cycles to validate the proposed strategy. The results indicate that the optimal adaption EF control strategy will be able to adapt to different expected trip distances and improve the fuel economy performance by up to 13.8% compared to the ECMS with constant EF.


Author(s):  
Han Zhang ◽  
Jibin Yang ◽  
Jiye Zhang ◽  
Pengyun Song ◽  
Ming Li

Achieving an optimal operating cost is a challenge for the development of hybrid tramways. In the past few years, in addition to fuel costs, the lifespan of the power source is being increasingly considered as an important factor that influences the operating cost of a tramway. In this work, an optimal energy management strategy based on a multi-mode strategy and optimisation algorithm is described for a high-power fuel cell hybrid tramway. The objective of optimisation is to decrease the operating costs under the conditions of guaranteeing tramway performance. Besides the fuel costs, the replacement cost and initial investment of all power units are also considered in the cost model, which is expressed in economic terms. Using two optimisation algorithms, a multi-population genetic algorithm and an artificial fish swarm algorithm, the hybrid system's power targets for the energy management strategy were acquired using the multi-objective optimisation. The selected case study includes a low-floor light rail vehicle, and experimental validations were performed using a hardware-in-the-loop workbench. The results testify that an optimised energy management strategy can fulfil the operational requirements, reduce the daily operation costs and improve the efficiency of the fuel cell system for a hybrid tramway.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879776 ◽  
Author(s):  
Jianjun Hu ◽  
Zhihua Hu ◽  
Xiyuan Niu ◽  
Qin Bai

To improve the fuel efficiency and battery life-span of plug-in hybrid electric vehicle, the energy management strategy considering battery life decay is proposed. This strategy is optimized by genetic algorithm, aiming to reduce the fuel consumption and battery life decay of plug-in hybrid electric vehicle. Besides, to acquire better drive-cycle adaptability, driving patterns are recognized with probabilistic neural network. The standard driving cycles are divided into urban congestion cycle, highway cycle, and urban suburban cycle; the optimized energy management strategies in three representative driving cycles are established; meanwhile, a comprehensive test driving cycle is constructed to verify the proposed strategies. The results show that adopting the optimized control strategies, fuel consumption, and battery’s life decay drop by 1.9% and 3.2%, respectively. While using the drive-cycle recognition, the features of different driving cycles can be identified, and based on it, the vehicle can choose appropriate control strategy in different driving conditions. In the comprehensive test driving cycle, after recognizing driving cycles, fuel consumption and battery’s life decay drop by 8.6% and 0.3%, respectively.


Author(s):  
T. H. Pham ◽  
P. P. J. van den Bosch ◽  
J. T. B. A. Kessels ◽  
R. G. M. Huisman

Battery temperature has large impact on battery power capability and battery life time. In Hybrid Electric Heavy-duty trucks (HEVs), the high-voltage battery is normally equipped with an active Battery Thermal Management System (BTMS) guaranteeing a desired battery life time. Since the BTMS can consume a substantial amount of energy, this paper aims at integrating the Energy Management Strategy (EMS) and BTMS to minimize the overall operational cost of the truck (considering diesel fuel cost and battery life time cost). The proposed on-line strategy makes use of the Equivalent Consumption Minimization Strategy (ECMS) along with a physics-based approach to optimize both the power split (between the Internal Combustion Engine (ICE) and the Motor Generator (MG)) and the BTMS’s operation. The strategy also utilizes a quasi-static battery cycle-life model taking into account the effects of battery power and battery temperature on the battery capacity loss. Simulation results present an appropriate strategy for EMS and BTMS integration, and demonstrate the trade-off between the total vehicle fuel consumption and the battery life time.


Author(s):  
Othmane Maakoul ◽  
Hamid El Omari ◽  
Aziza Abid

Our main objective is to evaluate the performance of a new method to optimize the energy management of a production system composed of six cogeneration units using artificial intelligence. The optimization criterion is economic and environmental in order to minimize the total fuel cost, as well as the reduction of polluting gas emissions such as COx, NOx and SOx. First, a statistical model has been developed to determine the power that the cogeneration units can provide. Then, an economic model of operation was developed: fuel consumption and pollutant gas emissions as a function of the power produced. Finally, we studied the energy optimization of the system using genetic algorithms (GA), and contribute to the research on improving the efficiency of the studied power system. The GA has a better optimization performance, it can easily choose satisfactory solutions according to the optimization objectives, and compensate for these defects using its own characteristics. These characteristics make GA have outstanding advantages in iterative optimization. The robustness of the proposed algorithm is validated by testing six cogeneration units, and the obtained simulation results of the proposed system prove the value and effectiveness of GA for efficiency improvement as well as operating cost minimization.


Sign in / Sign up

Export Citation Format

Share Document