scholarly journals An Efficient Pilot Assignment Scheme for Addressing Pilot Contamination in Multicell Massive MIMO Systems

Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 372 ◽  
Author(s):  
Ahmed Al-hubaishi ◽  
Nor Noordin ◽  
Aduwati Sali ◽  
Shamala Subramaniam ◽  
Ali Mohammed Mansoor

The reuse of the same pilot group across cells to address bandwidth limitations in a network has resulted in pilot contamination. This causes severe inter-cell interference at the targeted cell. Pilot contamination is associated with multicell massive multiple-input multiple-output (MIMO) systems which degrades the system performance even when extra arrays of antennas are added to the network. In this paper, we propose an efficient pilot assignment (EPA) scheme to address this issue by maximizing the minimum uplink rate of the target cell’s users. To achieve this, we exploit the large-scale characteristics of the fading channel to minimize the amount of outgoing inter-cell interference at the target cell. Results from the simulation show that the EPA scheme outperforms both the conventional and the smart pilot assignment (SPA) schemes by reducing the effect of inter-cell interference. These results, show that the EPA scheme has significantly improved the system performance in terms of achievable uplink rate and cumulative distribution function (CDF) for both signal-to-interference-plus-noise ratio (SINR), and uplink rate.

2018 ◽  
Vol 39 (2) ◽  
pp. 107
Author(s):  
Victor Croisfelt Rodrigues ◽  
Taufik Abrão

The demand for higher data rates can be satisfied by the spectral efficiency (SE) improvement offered by Massive multiple-input multiple-output (M-MIMO) systems. However, the pilot contamination remains as a fundamental issue to obtain the paramount SE in such systems. This propitiated the research of several methods to mitigate pilot contamination. One of these procedures is based on the coordination of the cells, culminating in proposals with multiple pilot training phases. This paper aims to expand the results of the original paper, whereby the concepts of large pilot training phases were offered. The evaluation of such method was conducted through more comprehensible numerical results, in which a large number of antennas were assumed and more rigorous SE expressions were used. The channel estimation approaches relying on multiple pilot training phases were considered cumbersome for implementation and an uninteresting solution to overcome pilot contamination; contradicting the results presented in the genuine paper.


2014 ◽  
Vol 696 ◽  
pp. 183-190
Author(s):  
Yue Heng Li ◽  
Ming Hao Fu ◽  
Li Wang ◽  
Mei Yan Ju ◽  
Ping Huang

This paper focuses its research work on the capacity and outage performances of a distributed multiple-input multiple-output (DMIMO) system in a multi-cell environment. For this purpose, the multi-cell DMIMO structure is modeled first, and based on this model, the so-called blanket communication and selective communication schemes are compared, and the formula of the output signal to interference plus noise ratio (SINR) of the above two schemes are given to illustrate the way of an inter-cell interference affecting the system performance. Then the expressions of the average capacity and outage probability are derived by using the probability density function (PDF) of the output SINR in the preferred selective communication scheme with some necessary approximations. Finally, the computer simulations are provided to explore the possible rule of upper layer network scheduling in overcoming the inter-cell interferences and in optimizing the capacity and outage performances in the DMIMO systems.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6213
Author(s):  
Muhammad Irshad Zahoor ◽  
Zheng Dou ◽  
Syed Bilal Hussain Shah ◽  
Imran Ullah Khan ◽  
Sikander Ayub ◽  
...  

Due to large spectral efficiency and low power consumption, the Massive Multiple-Input-Multiple-Output (MIMO) became a promising technology for the 5G system. However, pilot contamination (PC) limits the performance of massive MIMO systems. Therefore, two pilot scheduling schemes (i.e., Fractional Pilot Reuse (FPR) and asynchronous fractional pilot scheduling scheme (AFPS)) are proposed, which significantly mitigated the PC in the uplink time division duplex (TDD) massive MIMO system. In the FPR scheme, all the users are distributed into the central cell and edge cell users depending upon their signal to interference plus noise ratio (SINR). Further, the capacity of central and edge users is derived in terms of sum-rate, and the ideal number of the pilot is calculated which significantly maximized the sum rate. In the proposed AFPS scheme, the users are grouped into central users and edge users depending upon the interference they receive. The central users are assigned the same set of pilots because these users are less affected by interference, while the edge users are assigned the orthogonal pilots because these users are severely affected by interference. Consequently, the pilot overhead is reduced and inter-cell interference (ICI) is minimized. Further, results verify that the proposed schemes outperform the previous proposed traditional schemes, in terms of improved sum rates.


2019 ◽  
Vol 15 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Issa Chihaoui ◽  
Mohamed Lassaad Ammari

In this paper, we propose and analyze a wirelesstransmitter, for multiple-input multiple-output (MIMO) systems,that relies exclusively on energy harvesting. We consider wirelesstransceivers where the transmitter harvests the total requiredenergy from its environment through various sources. We assumethat both transmitter and receiver are equipped with multipleantennas. At the transmitter, a single transmit antenna thatmaximizes the signal-to-noise ratio (SNR) at the receiver isselected for transmission. The remaining antennas are used forenergy harvesting. At the receiver side, maximal-ratio com-bining (MRC) is used. Furthermore, we assume that all theharvested power is used to power the transmitter immediately.The performance of the proposed scheme is analyzed in terms ofoutage probability (OP), symbol error rate (SER) and channelcapacity. The harvested energy comes from random sourcesand is considered as a random variable. Assuming that theharvested power follows a gamma distribution and the MIMOchannel is a Rayleigh flat fading process, we derive a closed-form expressions for the exact cumulative distribution function(CDF) and probability density function (PDF) of the SNR. Basedon this, we analyze the performance of the proposed energyharvesting scheme. The obtained analytical results are validatedby comparing them with the results of Monte-Carlo simulations.


2020 ◽  
Vol 10 (3) ◽  
pp. 867
Author(s):  
Wei Lei ◽  
Li Cheng ◽  
Yu Lei ◽  
Zhengrong Li ◽  
Lianying Zou

Recently, a large-scale fading precoding (LSFP) for the wireless massive multiple-input, multiple-output (MIMO) systems has been proposed. In this precoding, the channel information of all the cells using re-use pilot sequences is processed jointly, and pilot contamination and interference due to a certain number of antennas are effectively eliminated. Additionally, recent studies have found that research in the asymptotic field can be applied to the wireless large-scale MIMO systems. In the LSFP, pilot contamination and signal interference will be completely eliminated when a number of antennas at a base station tend to be unlimited. In this research found that the LSFP method can eliminate most pilot contamination and interference in practical applications only when the number of antennas of the base station reaches hundreds of orders, which greatly increases the equipment construction cost. On the other hand, channel inversion denotes a multi-user channel modulation technology, where a vector signal generated between a user and a base station is used to form an inverse channel matrix so that the channels of each user are balanced during the transmission. In this paper, the channel inversion technology is used in the LSFP. The improved LSFP can effectively reduce the number of antennas required by the base station without affecting the performance of eliminating the pilot contamination and interference. It is shown that when the number of antennas of a base station tends to be unlimited, the improved LSFP can eliminate pilot contamination and signal interference. The simulation results show that in the same practical scenario, when the base station is equipped with the same number of antennas, the improved method can more effectively improve the anti-contamination and anti-interference performance over conventional LSFP.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2884 ◽  
Author(s):  
Kai Zhai ◽  
Zheng Ma ◽  
Xianfu Lei

In this paper, we estimate the uplink performance of large-scale multi-user multiple-input multiple-output (MIMO) networks. By applying minimum-mean-square-error (MMSE) detection, a novel statistical distribution of the signal-to-interference-plus-noise ratio (SINR) for any user is derived, for path loss, shadowing and Rayleigh fading. Suppose that the channel state information is perfectly known at the base station. Then, we derive the analytical expressions for the pairwise error probability (PEP) of the massive multiuser MMSE–MIMO systems, based on which we further obtain the upper bound of the bit error rate (BER). The analytical results are validated successfully through simulations for all cases.


Author(s):  
Rong Ran ◽  
Hayoung Oh

AbstractSparse-aware (SA) detectors have attracted a lot attention due to its significant performance and low-complexity, in particular for large-scale multiple-input multiple-output (MIMO) systems. Similar to the conventional multiuser detectors, the nonlinear or compressive sensing based SA detectors provide the better performance but are not appropriate for the overdetermined multiuser MIMO systems in sense of power and time consumption. The linear SA detector provides a more elegant tradeoff between performance and complexity compared to the nonlinear ones. However, the major limitation of the linear SA detector is that, as the zero-forcing or minimum mean square error detector, it was derived by relaxing the finite-alphabet constraints, and therefore its performance is still sub-optimal. In this paper, we propose a novel SA detector, named single-dimensional search-based SA (SDSB-SA) detector, for overdetermined uplink MIMO systems. The proposed SDSB-SA detector adheres to the finite-alphabet constraints so that it outperforms the conventional linear SA detector, in particular, in high SNR regime. Meanwhile, the proposed detector follows a single-dimensional search manner, so it has a very low computational complexity which is feasible for light-ware Internet of Thing devices for ultra-reliable low-latency communication. Numerical results show that the the proposed SDSB-SA detector provides a relatively better tradeoff between the performance and complexity compared with several existing detectors.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Hao Guo ◽  
Behrooz Makki ◽  
Tommy Svensson

Initial access (IA) is identified as a key challenge for the upcoming 5G mobile communication system operating at high carrier frequencies, and several techniques are currently being proposed. In this paper, we extend our previously proposed efficient genetic algorithm- (GA-) based beam refinement scheme to include beamforming at both the transmitter and the receiver and compare the performance with alternative approaches in the millimeter wave multiuser multiple-input-multiple-output (MU-MIMO) networks. Taking the millimeter wave communications characteristics and various metrics into account, we investigate the effect of different parameters such as the number of transmit antennas/users/per-user receive antennas, beamforming resolutions, and hardware impairments on the system performance employing different beam refinement algorithms. As shown, our proposed GA-based approach performs well in delay-constrained networks with multiantenna users. Compared to the considered state-of-the-art schemes, our method reaches the highest service outage-constrained end-to-end throughput with considerably less implementation complexity. Moreover, taking the users’ mobility into account, our GA-based approach can remarkably reduce the beam refinement delay at low/moderate speeds when the spatial correlation is taken into account. Finally, we compare the cases of collaborative users and noncollaborative users and evaluate their difference in system performance.


Author(s):  
В.Б. КРЕЙНДЕЛИН ◽  
М.В. ГОЛУБЕВ

Совместный с прекодингом автовыбор антенн на приемной и передающей стороне - одно из перспективных направлений исследований для реализации технологий Multiple Transmission and Reception Points (Multi-TRP, множество точек передачи и приема) в системах со многими передающими и приемными антеннами Massive MIMO (Multiple-Input-Multiple-Output), которые активно развиваются в стандарте 5G. Проанализированы законодательные ограничения, влияющие на применимость технологий Massive MIMO, и специфика реализации разрабатываемого алгоритма в миллиметровомдиапа -зоне длин волн. Рассмотрены алгоритмы формирования матриц автовыбора антенн как на передающей, так и на приемной стороне. Сформулирована строгая математическая постановка задачи для двух критериев работы алгоритма: максимизация взаимной информации и минимизация среднеквадратичной ошибки. Joint precoding and antenna selection both on transmitter and receiver sides is one of the promising research areas for evolving toward the Multiple Transmission and Reception Points (Multi-TRP) concept in Massive MIMO systems. This technology is under active development in the coming 5G 3GPP releases. We analyze legal restrictions for the implementation of 5G Massive MIMO technologies in Russia and the specifics of the implementation of the developed algorithm in the millimeter wavelength range. Algorithms of antenna auto-selection matrices formation on both transmitting and receiving sides are considered. Two criteria are used for joint antenna selection and precoding: maximizing mutual information and minimizing mean square error.


Sign in / Sign up

Export Citation Format

Share Document