multiuser detectors
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 5)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 16 ◽  
pp. 541-559
Author(s):  
Vyacheslav Tuzlukov

Group-blind multiuser detectors for uplink code-division multiple-access (CDMA) were developed by Wang and Host-Madsen. These detectors make use of the spreading sequences of known users to construct a group constraint to suppress the intracell interference. However, such techniques demand the estimation of the multipath channels and the delays of the known users. In the present paper, the blind generalized receiver is de-veloped for CDMA in fading multipath channels. The proposed generalized receiver utilizes the correlation in-formation between consecutively received signals to generate the corresponding group constraint. It is shown that by incorporating this group constraint, the proposed generalized receiver can provide different performance gains in both the uplink and downlink environments. Compared with the well-known group-blind detectors, our new methods only need to estimate the multipath channel of the desired user and do not require the channel es-timation of other users. Simulation results demonstrate that the proposed generalized receiver outperforms the conventional blind linear multiuser detectors.


Author(s):  
Rong Ran ◽  
Hayoung Oh

AbstractSparse-aware (SA) detectors have attracted a lot attention due to its significant performance and low-complexity, in particular for large-scale multiple-input multiple-output (MIMO) systems. Similar to the conventional multiuser detectors, the nonlinear or compressive sensing based SA detectors provide the better performance but are not appropriate for the overdetermined multiuser MIMO systems in sense of power and time consumption. The linear SA detector provides a more elegant tradeoff between performance and complexity compared to the nonlinear ones. However, the major limitation of the linear SA detector is that, as the zero-forcing or minimum mean square error detector, it was derived by relaxing the finite-alphabet constraints, and therefore its performance is still sub-optimal. In this paper, we propose a novel SA detector, named single-dimensional search-based SA (SDSB-SA) detector, for overdetermined uplink MIMO systems. The proposed SDSB-SA detector adheres to the finite-alphabet constraints so that it outperforms the conventional linear SA detector, in particular, in high SNR regime. Meanwhile, the proposed detector follows a single-dimensional search manner, so it has a very low computational complexity which is feasible for light-ware Internet of Thing devices for ultra-reliable low-latency communication. Numerical results show that the the proposed SDSB-SA detector provides a relatively better tradeoff between the performance and complexity compared with several existing detectors.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2069
Author(s):  
Byeong Yong Kong

This paper presents a low-complexity address generation unit (AGU) for multiuser detectors in interleave division multiple access (IDMA) systems. To this end, for the first time, all possible options for designing AGUs are first analyzed in detail. Subsequently, a complexity reduction technique is applied to each of those architectures. More specifically, some components in AGUs are relocated to make them shareable and removable without affecting the functionality. The complete transparency of such renovation makes it applicable to any existing multiuser detector without tailoring the interfacing components therein. Measuring the hardware complexity, all the resulting AGUs are compared with each other, and a new architecture simpler than the state-of-the-art one is developed. Implementation results in a 65 nm CMOS process, demonstrating that the proposed AGU can alleviate the equivalent gate count and the power consumption of the prior process by 13% and 31%, respectively.


ETRI Journal ◽  
2018 ◽  
Vol 40 (2) ◽  
pp. 218-226
Author(s):  
Uğur Yeşilyurt ◽  
Özgür Ertuğ

Sign in / Sign up

Export Citation Format

Share Document