scholarly journals High-Performance Low-Pass Filter Using Stepped Impedance Resonator and Defected Ground Structure

Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 403 ◽  
Author(s):  
Jin Zhang ◽  
Ruosong Yang ◽  
Chen Zhang

A microstrip low-pass filter (LPF) using reformative stepped impedance resonator (SIR) and defected ground structure (DGS) is proposed in this paper. The proposed filter not only possesses the advantage of high frequency selectivity of SIR hairpin LPF with internal coupling, but also possesses the large stop-band (SB) bandwidth by adjusting the number and area of DGS units. The LPF proposed in this paper possesses the properties of miniaturization, wide SB, high selectivity, and low pass-band ripple (PBR) simultaneously. The characteristic parameters of the proposed LPF is that: the pass-band (PB) is 0~2 GHz, the PBR is 0.5 dB, the SB range is from 2.4 GHz to 9 GHz when the attenuation is under 20 dB, and the maximal attenuation could reach 45 dB in the SB. The size of this proposed LPF is 0.13 λ × 0.09 λ ; λ is the corresponding wavelength of the upper PB edge frequency of 2 GHz.

2013 ◽  
Vol 273 ◽  
pp. 371-374
Author(s):  
Bao Ping Li ◽  
Yan Liang Zhang

Due to the frequency response periodicity of distributed transmission line, microstrip band-pass filter usually produces parasitic pass-band and outputs harmonics away from the center frequency of main pass-band. Based on the study of rectangular ring defected ground structure, a 5-order microstrip LPF(low-pass filter) was designed using the single-pole band-stop and slow-wave characteristics of the rectangular ring DGS(Defected Ground Structure) and SISS(Step-Impedance Shunt Stub) structure. Compared with traditional LPF, this LPF presents the advantages of compact size, low insertion loss, broad stop-band and high steep. It also validates the requirements of miniaturization and high performance for filters.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ahmed Boutejdar ◽  
Ahmed A. Ibrahim ◽  
Edmund P. Burte

A novel wide stopband (WSB) low pass filter based on combination of defected ground structure (DGS), defected microstrip structure (DMS), and compensated microstrip capacitors is proposed. Their excellent defected characteristics are verified through simulation and measurements. Additionally to a sharp cutoff, the structure exhibits simple design and fabrication, very low insertion loss in the pass band of 0.3 dB and it achieves a wide rejection bandwidth with overall 20 dB attenuation from 1.5 GHz up to 8.3 GHz. The compact low pass structure occupies an area of (0.40λg  × 0.24λg) where λg = 148 mm is the waveguide length at the cut-off frequency 1.1 GHz. Comparison between measured and simulated results confirms the validity of the proposed method. Such filter topologies are utilized in many areas of communications systems and microwave technology because of their several benefits such as small losses, wide reject band, and high compactness.


This paper presents the design, analysis and fabrication of Butterworth Low pass filter with sharp rejection response using defected ground surface technique. The work is carried out to design a low pass filter with cut-off frequency 2.5 GHz to achieved the broad frequency response; the first step is to make a rectangle of 10x10mm at ground surface and the equivalent circuit for the DGS, subsequently followed to consequent L-C parameters extraction using analysis of S parameters response (EM simulation). The designed Butterworth low pass filter is realized and optimized using DGS (Defected Ground Structure) to attain a compact size, satisfactory transition sharpness along with low insertion loss in pass band and wide rejection in the stop band. The fabricated device showed the good conformity with theoretical and VNA measured result.


2018 ◽  
Vol 876 ◽  
pp. 133-137
Author(s):  
Ping Cheng Chen ◽  
Chung Long Pan ◽  
J.D. Huang ◽  
S.H. Hong

A design and simulation for low pass microstrip line filter with defected ground structure has been researched, the main purpose is with the simplest method to design an ideal low pass filter. In this paper, simulated soft (Ansoft HFSS V.6.0) used to be simulated the frequency response under different geometric shape of DGS. The results show good performance of a low pass filter with DGS. Final, a low pass filter with DGS design and fabricated, The properties are shown as flow: center-frequency: 7.28G, S21:-47dB, cut-off frequency: 5.88GHz.


2013 ◽  
Vol 562-565 ◽  
pp. 1132-1136
Author(s):  
Xiao Wei Liu ◽  
Jian Yang ◽  
Song Chen ◽  
Liang Liu ◽  
Rui Zhang ◽  
...  

In this paper, we design a high-order switched capacitor filter for rapid change parameter converter. This design uses a structure which consists of three biquads filter sub-units. The design is a 6th-order SC elliptic low-pass filter, and the sample frequency is 250 kHz. By the MATLAB Simulink simulation, the system can meet the design requirements in the time domain. In this paper, the 6th-order switched capacitor elliptic low-pass filter was implemented under 0.5 um CMOS process and simulated in Cadence. The final simulation results show that the pass-band cutoff frequency is 10 kHz, and the maximum pass-band ripple is about 0.106 dB. The stop-band cutoff frequency is 20 kHz, and the minimum stop-band attenuation is 74.78 dB.


Sign in / Sign up

Export Citation Format

Share Document