scholarly journals Sub-Aperture Partitioning Method for Three-Dimensional Wide-Angle Synthetic Aperture Radar Imaging with Non-Uniform Sampling

Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 629 ◽  
Author(s):  
Dou Sun ◽  
Shiqi Xing ◽  
Yongzhen Li ◽  
Bo Pang ◽  
Xuesong Wang

For a three-dimensional wide-angle synthetic aperture radar (SAR) with non-uniform sampling, it is necessary to divide its large aperture into several small sub-apertures before imaging due to the anisotropic characteristics of the target. The existing sub-aperture partitioning methods divide the aperture with equal intervals. However, for the non-uniformly sampled SAR, those equal-interval partitioning methods may have a bad effect on the resolution of the SAR imaging result. In view of this, a sub-aperture partitioning method for three-dimensional wide-angle SAR imaging with non-uniform sampling was proposed in this paper. First, we analyzed the relationship between the three-dimensional resolution and the sampling distribution in K-space based on the Cramer–Rao lower bound. Subsequently, according to the distribution of K-space sampling, the optimum size of each sub-aperture was found and the aperture was divided non-uniformly. Furthermore, the proposed method was validated by electromagnetic simulation data. The proposed sub-aperture partitioning method ensured that the resolution of each sub-aperture was high and consistent. By comparing with the equal-interval partitioning method, the experimental results showed that our proposed method had a higher resolution imaging result.

2019 ◽  
Vol 9 (13) ◽  
pp. 2728 ◽  
Author(s):  
Rongchun Hu ◽  
Zhenming Peng ◽  
Kelong Zheng

This paper presents a modulus stretch-based circular Synthetic Aperture Radar (SAR) imaging method. This method improves the traditional backprojection algorithm for circular SAR imaging, and introduces the modulus stretch transformation function in the imaging process. By performing a modulus stretch transformation on the intermediate results, the target contour in the final imaging result is thinner and clearer. A thinner and clearer contour can help to increase the recognizability of the target and provide a basis for subsequent target recognition. The proposed method is demonstrated on the line target imaging simulations and Gothca dataset.


2018 ◽  
Vol 10 (12) ◽  
pp. 1957 ◽  
Author(s):  
Qiyong Liu ◽  
Ying Luo ◽  
Qun Zhang ◽  
Wen Hong ◽  
Tat Yeo

The downward-looking sparse linear array three-dimensional synthetic aperture radar (DLSLA 3D SAR) has attracted a great deal of attention, due to the ability to obtain three-dimensional (3D) images. However, if the velocity and the yaw rate of the platform are not measured with enough accuracy, the azimuth signal cannot be compressed and then the 3D image of the scene cannot be obtained. In this paper, we propose a method for platform motion parameter estimation, and downward-looking 3D SAR imaging. A DLSLA 3D SAR imaging model including yaw rate was established. We then calculated the Doppler frequency modulation, which is related to the cross-track coordinates rather than the azimuth coordinates. Thus, the cross-track signal reconstruction was realized. Furthermore, based on the minimum entropy criterion (MEC), the velocity and yaw rate of the platform were accurately estimated, and the azimuth signal compression was also realized. Moreover, a deformation correction procedure was designed to improve the quality of the image. Simulation results were given to demonstrate the validity of the proposed method.


1991 ◽  
Vol 28 (2) ◽  
pp. 257-265 ◽  
Author(s):  
D. F. Graham ◽  
D. R. Grant

Side-looking, C-band synthetic-aperture radar (SAR) penetrates cloud and fog, and operates day or night, to produce pseudo-three-dimensional terrain images with enhanced topography and surface roughness. The images, which have a 20 m resolution and cover large areas, have been used to map the regional trends, patterns of lineaments, and terrain types over a 6200 km2 area of complex lithology, structure, and drift cover. Four lineament classes are differentiated. Glacial trends are clear, and bedrock structures (faults, fractures, joints, foliation, and folded bedding) with relief expression at the surface show through the drift as lineaments. They accurately reproduce most known features when compared with bedrock and Quatenary geology maps. Hitherto unrecognized structural elements are revealed. Tones and textures reflect minute surface roughness variations useful in terrain classification. SAR wide-swath-mode imagery is thus a valuable complement to aerial photography, and is superior in revealing hummocky moraine, ribbed moraine, boulder fields and stony till. Wider use of this imagery is encouraged.


Sign in / Sign up

Export Citation Format

Share Document