scholarly journals A Comprehensive Medical Decision–Support Framework Based on a Heterogeneous Ensemble Classifier for Diabetes Prediction

Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 635 ◽  
Author(s):  
Shaker El-Sappagh ◽  
Mohammed Elmogy ◽  
Farman Ali ◽  
Tamer ABUHMED ◽  
S. M. Riazul Islam ◽  
...  

Early diagnosis of diabetes mellitus (DM) is critical to prevent its serious complications. An ensemble of classifiers is an effective way to enhance classification performance, which can be used to diagnose complex diseases, such as DM. This paper proposes an ensemble framework to diagnose DM by optimally employing multiple classifiers based on bagging and random subspace techniques. The proposed framework combines seven of the most suitable and heterogeneous data mining techniques, each with a separate set of suitable features. These techniques are k-nearest neighbors, naïve Bayes, decision tree, support vector machine, fuzzy decision tree, artificial neural network, and logistic regression. The framework is designed accurately by selecting, for every sub-dataset, the most suitable feature set and the most accurate classifier. It was evaluated using a real dataset collected from electronic health records of Mansura University Hospitals (Mansura, Egypt). The resulting framework achieved 90% of accuracy, 90.2% of recall = 90.2%, and 94.9% of precision. We evaluated and compared the proposed framework with many other classification algorithms. An analysis of the results indicated that the proposed ensemble framework significantly outperforms all other classifiers. It is a successful step towards constructing a personalized decision support system, which could help physicians in daily clinical practice.

Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 574
Author(s):  
Gennaro Tartarisco ◽  
Giovanni Cicceri ◽  
Davide Di Pietro ◽  
Elisa Leonardi ◽  
Stefania Aiello ◽  
...  

In the past two decades, several screening instruments were developed to detect toddlers who may be autistic both in clinical and unselected samples. Among others, the Quantitative CHecklist for Autism in Toddlers (Q-CHAT) is a quantitative and normally distributed measure of autistic traits that demonstrates good psychometric properties in different settings and cultures. Recently, machine learning (ML) has been applied to behavioral science to improve the classification performance of autism screening and diagnostic tools, but mainly in children, adolescents, and adults. In this study, we used ML to investigate the accuracy and reliability of the Q-CHAT in discriminating young autistic children from those without. Five different ML algorithms (random forest (RF), naïve Bayes (NB), support vector machine (SVM), logistic regression (LR), and K-nearest neighbors (KNN)) were applied to investigate the complete set of Q-CHAT items. Our results showed that ML achieved an overall accuracy of 90%, and the SVM was the most effective, being able to classify autism with 95% accuracy. Furthermore, using the SVM–recursive feature elimination (RFE) approach, we selected a subset of 14 items ensuring 91% accuracy, while 83% accuracy was obtained from the 3 best discriminating items in common to ours and the previously reported Q-CHAT-10. This evidence confirms the high performance and cross-cultural validity of the Q-CHAT, and supports the application of ML to create shorter and faster versions of the instrument, maintaining high classification accuracy, to be used as a quick, easy, and high-performance tool in primary-care settings.


Sign in / Sign up

Export Citation Format

Share Document