scholarly journals A Review of Performance, Energy and Privacy of Intrusion Detection Systems for IoT

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 629 ◽  
Author(s):  
Junaid Arshad ◽  
Muhammad Ajmal Azad ◽  
Roohi Amad ◽  
Khaled Salah ◽  
Mamoun Alazab ◽  
...  

Internet of Things (IoT) forms the foundation of next generation infrastructures, enabling development of future cities that are inherently sustainable. Intrusion detection for such paradigms is a non-trivial challenge which has attracted further significance due to extraordinary growth in the volume and variety of security threats for such systems. However, due to unique characteristics of such systems i.e., battery power, bandwidth and processor overheads and network dynamics, intrusion detection for IoT is a challenge, which requires taking into account the trade-off between detection accuracy and performance overheads. In this context, we are focused at highlighting this trade-off and its significance to achieve effective intrusion detection for IoT. Specifically, this paper presents a comprehensive study of existing intrusion detection systems for IoT systems in three aspects: computational overhead, energy consumption and privacy implications. Through extensive study of existing intrusion detection approaches, we have identified open challenges to achieve effective intrusion detection for IoT infrastructures. These include resource constraints, attack complexity, experimentation rigor and unavailability of relevant security data. Further, this paper is envisaged to highlight contributions and limitations of the state-of-the-art within intrusion detection for IoT, and aid the research community to advance it by identifying significant research directions.

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Wathiq Laftah Al-Yaseen ◽  
Zulaiha Ali Othman ◽  
Mohd Zakree Ahmad Nazri

Presently, the processing time and performance of intrusion detection systems are of great importance due to the increased speed of traffic data networks and a growing number of attacks on networks and computers. Several approaches have been proposed to address this issue, including hybridizing with several algorithms. However, this paper aims at proposing a hybrid of modifiedK-means with C4.5 intrusion detection system in a multiagent system (MAS-IDS). The MAS-IDS consists of three agents, namely, coordinator, analysis, and communication agent. The basic concept underpinning the utilized MAS is dividing the large captured network dataset into a number of subsets and distributing these to a number of agents depending on the data network size and core CPU availability. KDD Cup 1999 dataset is used for evaluation. The proposed hybrid modifiedK-means with C4.5 classification in MAS is developed in JADE platform. The results show that compared to the current methods, the MAS-IDS reduces the IDS processing time by up to 70%, while improving the detection accuracy.


Author(s):  
Aymen Akremi ◽  
Hassen Sallay ◽  
Mohsen Rouached

Investigators search usually for any kind of events related directly to an investigation case to both limit the search space and propose new hypotheses about the suspect. Intrusion detection system (IDS) provide relevant information to the forensics experts since it detects the attacks and gathers automatically several pertinent features of the network in the attack moment. Thus, IDS should be very effective in term of detection accuracy of new unknown attacks signatures, and without generating huge number of false alerts in high speed networks. This tradeoff between keeping high detection accuracy without generating false alerts is today a big challenge. As an effort to deal with false alerts generation, the authors propose new intrusion alert classifier, named Alert Miner (AM), to classify efficiently in near real-time the intrusion alerts in HSN. AM uses an outlier detection technique based on an adaptive deduced association rules set to classify the alerts automatically and without human assistance.


2021 ◽  
Vol 13 (18) ◽  
pp. 10057
Author(s):  
Imran ◽  
Faisal Jamil ◽  
Dohyeun Kim

The connectivity of our surrounding objects to the internet plays a tremendous role in our daily lives. Many network applications have been developed in every domain of life, including business, healthcare, smart homes, and smart cities, to name a few. As these network applications provide a wide range of services for large user groups, the network intruders are prone to developing intrusion skills for attack and malicious compliance. Therefore, safeguarding network applications and things connected to the internet has always been a point of interest for researchers. Many studies propose solutions for intrusion detection systems and intrusion prevention systems. Network communities have produced benchmark datasets available for researchers to improve the accuracy of intrusion detection systems. The scientific community has presented data mining and machine learning-based mechanisms to detect intrusion with high classification accuracy. This paper presents an intrusion detection system based on the ensemble of prediction and learning mechanisms to improve anomaly detection accuracy in a network intrusion environment. The learning mechanism is based on automated machine learning, and the prediction model is based on the Kalman filter. Performance analysis of the proposed intrusion detection system is evaluated using publicly available intrusion datasets UNSW-NB15 and CICIDS2017. The proposed model-based intrusion detection accuracy for the UNSW-NB15 dataset is 98.801 percent, and the CICIDS2017 dataset is 97.02 percent. The performance comparison results show that the proposed ensemble model-based intrusion detection significantly improves the intrusion detection accuracy.


Author(s):  
Prabhu Kavin B ◽  
Ganapathy S

Intrusion Detection Systems are playing major role in network security in this internet world. Many researchers have been introduced number of intrusion detection systems in the past. Even though, no system was detected all kind of attacks and achieved better detection accuracy. Most of the intrusion detection systems are used data mining techniques such as clustering, outlier detection, classification, classification through learning techniques. Most of the researchers have been applied soft computing techniques for making effective decision over the network dataset for enhancing the detection accuracy in Intrusion Detection System. Few researchers also applied artificial intelligence techniques along with data mining algorithms for making dynamic decision. This paper discusses about the number of intrusion detection systems that are proposed for providing network security. Finally, comparative analysis made between the existing systems and suggested some new ideas for enhancing the performance of the existing systems.


Sign in / Sign up

Export Citation Format

Share Document