scholarly journals Optimal Planning of Real-Time Bus Information System for User-Switching Behavior

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1903
Author(s):  
Zoonky Lee ◽  
Sewoong Hwang ◽  
Jonghyuk Kim

Seoul Metropolitan City’s buses cater to more than 50% of the average daily public transportation use, and they are the most important transportation mode in Korea, together with the subway. Since 2004, all public transportation records of passengers have been stored in Seoul, using smart transportation cards. This study explores the environmental and psychological factors in implementing a smart transportation system. We analyze the switching behavior of traffic users according to traffic congestion time and number of transfers based on public transportation data and show that bus-use behavior differs according to the traffic information of users and the degree of traffic congestion. Information-based switching behavior of people living near bus stops induces people to change routes during traffic congestion. However, in non-congested situations, the original routes are used. These results can guide the formulation of policy measures on bus routes. We made it possible to continuously change the routes for certain buses, which were temporarily implemented due to traffic congestion. Moreover, we added a service that posts the estimated arrival time to major stops while reflecting real-time traffic conditions in addition to the bus location and arrival time information through the global positioning system.

2020 ◽  
Vol 7 (4) ◽  
pp. 667
Author(s):  
Gede Herdian Setiawan ◽  
I Ketut Dedy Suryawan

<p>Pertumbuhan jumlah kendaraan yang semakin meningkat setiap tahunnya mengakibatkan volume kendaraan yang melintasi ruas jalan semakin padat yang kerap mengakibatkan kemacetan lalu lintas. Kemacetan lalu lintas dapat menjadi beban biaya yang signifikan terhadap kegiatan ekonomi masyarakat. Informasi lalu lintas yang dinamis seperti informasi kondisi lalu lintas secara langsung <em>(real time)</em> akan membantu mempengaruhi aktivitas masyarakat pengguna lalu lintas untuk melakukan perencanaan dan penjadwalan aktivitas yang lebih baik. Penelitian ini mengusulkan model pengamatan kondisi lalu lintas berbasis data GPS pada <em>smartphone</em>, untuk informasi kondisi lalu lintas secara langsung. GPS <em>Receiver</em> pada <em>smartphone</em> menghasilkan data lokasi secara instan dan bersifat mobile sehingga dapat digunakan untuk pengambilan data kecepatan kendaraan secara langsung. Kecepatan kendaraan diperoleh berdasarkan jarak perpindahan koordinat kendaraan dalam satuan detik selanjutnya di konversi menjadi satuan kecepatan (km/jam) kemudian data kecepatan kendaraan di proses menjadi informasi kondisi lalu lintas. Secara menyeluruh model pengamatan berfokus pada tiga tahapan, yaitu akuisisi data kecepatan kendaraan berbasis GPS pada <em>smartphone</em>, pengiriman data kecepatan dan visualisasi kondisi lalu lintas berbasis GIS. Pengujian dilakukan pada ruas jalan kota Denpasar telah mampu mendapatkan data kecepatan kendaraan dan mampu menunjukkan kondisi lalu lintas secara langsung dengan empat kategori keadaan lalu lintas yaitu garis berwarna hitam menunjukkan lalu lintas macet dengan kecepatan kendaraan kurang dari 17 km/jam, merah menunjukkan padat dengan kecepatan kendaraan 17 km/jam sampai 27 km/jam, kuning menunjukkan sedang dengan kecepatan kendaraan 26 km/jam sampai 40 km/jam dan hijau menunjukkan lancar dengan kecepatan kendaraan diatas 40 km/jam.</p><p> </p><p><em><strong>Abstract</strong></em></p><p class="Abstract"><em>The growth in the number of vehicles that is increasing every year has resulted in the volume of vehicles crossing the road increasingly congested which often results in traffic congestion. Traffic congestion can be a significant cost burden on economic activities. Dynamic traffic information such as information on real time traffic conditions will help influence the activities of the traffic user community to better plan and schedule activities. This study proposes a traffic condition observation model based on GPS data on smartphones, for information on real time traffic conditions. The GPS Receiver on the smartphone produces location and coordinate data instantly and is mobile so that it can be used for direct vehicle speed data retrieval. Vehicle speed is obtained based on the displacement distance of the vehicle's coordinates in units of seconds and then converted into units of speed (km / h), the vehicle speed data is then processed into information on traffic conditions. Overall, the observation model focuses on three stages, namely GPS-based vehicle speed data acquisition on smartphones, speed data delivery and visualization of GIS-based traffic conditions. Tests carried out on the Denpasar city road segment have been able to obtain vehicle speed data and are able to show traffic conditions directly with four categories of traffic conditions, namely black lines indicating traffic jammed with vehicle speeds of less than 17 km / h, red indicates heavy with speed vehicles 17 to 27 km / h, yellow indicates medium speed with vehicles 26 km/h to 40 km / h and green shows fluent with vehicle speeds above 40 km / h.</em></p><p><em><strong><br /></strong></em></p>


2018 ◽  
Vol 30 (3) ◽  
pp. 281-291 ◽  
Author(s):  
Roozbeh Mohammadi ◽  
Amir Golroo ◽  
Mahdieh Hasani

In populated cities with high traffic congestion, traffic information may play a key role in choosing the fastest route between origins and destinations, thus saving travel time. Several research studies investigated the effect of traffic information on travel time. However, little attention has been given to the effect of traffic information on travel time according to trip distance. This paper aims to investigate the relation between real-time traffic information dissemination and travel time reduction for medium-distance trips. To examine this relation, a methodology is applied to compare travel times of two types of vehicle, with and without traffic information, travelling between an origin and a destination employing probe vehicles. A real case study in the metropolitan city of Tehran, the capital of Iran, is applied to test the methodology. There is no significant statistical evidence to prove that traffic information would have a significant impact on travel time reduction in a medium-distance trip according to the case study.


1998 ◽  
Vol 1645 (1) ◽  
pp. 111-119 ◽  
Author(s):  
Yu-Hsin Liu ◽  
Hani S. Mahmassani

Previous work on the effect of advanced traveler information systems was concerned primarily with immediate route choice decisions in response to real-time traffic information. Real-time traffic information also influences day-to-day decisions of trip makers, including departure time and route choices. Joint departure time decision and pretrip route selection are addressed, as well as en route path switching behavior by commuters under real-time information availability. Data were used from laboratory experiments using a dynamic interactive traveler simulator that allows actual commuters to simultaneously interact with each other within a simulated traffic corridor. Given real-time information provided by the system, commuters determine their departure time and route at the origin and select paths en route at various decision nodes along the trip. Day-to-day dynamic models of commuters’ joint departure time and route switching decisions are developed and calibrated by using a multinomial probit model framework that takes into account commuters’ learning from experience. The analysis provides insight into day-to-day effects of real-time traffic information on user decisions. Results indicate that the reliability of real-time information and supplied schedule delay (relative to the commuters’ preferred arrival time) are significant variables that influence users’ indifference band governing route switching behavior both pretrip and en route. These models are intended for use within evaluation frameworks (e.g., simulation-assignment models). In addition, the substantive insights provide guidelines for the design of real-time information content and systems.


2004 ◽  
Vol 38 (2) ◽  
pp. 187-223 ◽  
Author(s):  
Rong-Chang Jou ◽  
Soi-Hoi Lam ◽  
Mei-Chuan Weng ◽  
Chih-Cheng Chen

2012 ◽  
Vol 588-589 ◽  
pp. 1058-1061
Author(s):  
Ting Zhang ◽  
Zhan Wei Song

With the sustained growth of vehicle ownerships, traffic congestion has become obstacle of urban development. In addition to developing public transport and accelerating the construction of rail transit, use scientific managing and controlling method in real-time monitoring traffic flow to divert the traffic stream is an effective way to solve urban traffic problems. In this paper, cross-correlation algorithm is used to obtain real-time traffic information, such as capacity and occupancy of a lane, so as to control traffic lights intelligently.


2014 ◽  
Vol 962-965 ◽  
pp. 2818-2822 ◽  
Author(s):  
Ying Zhu ◽  
Dong Zhang ◽  
Jia Wei Zhang

To solve the problem of traffic congestion, many cities have adopted a series of measures to develop public transportation. The bus speed is an important factor to measure the level of bus service, and it helps to determine the arrival time of bus, which can reduce the passengers’ anxiety and waiting time at bus stops. Kalman filter, whose mathematical structure is relatively simple, is a recursive solution to the discrete-data linear filter problem. It has the strengths of little calculation amount, low storage amount, high real-time characteristics. Therefore, this paper develops a prediction model of bus speed based on Kalman filter, gives a specific program to predict speed and verifies the model according to the real-time GPS measurements of No.84150 in Beijing on each Friday in March, 2013.The result shows that the proposed model has high accuracy and can be applied to the prediction of bus speed.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Rusmadi Suyuti

Traffic information condition is a very useful  information for road user because road user can choose his best route for each trip from his origin to his destination. The final goal for this research is to develop real time traffic information system for road user using real time traffic volume. Main input for developing real time traffic information system is an origin-destination (O-D) matrix to represent the travel pattern. However, O-D matrices obtained through a large scale survey such as home or road side interviews, tend to be costly, labour intensive and time disruptive to trip makers. Therefore, the alternative of using traffic counts to estimate O-D matrices is particularly attractive. Models of transport demand have been used for many years to synthesize O-D matrices in study areas. A typical example of the approach is the gravity model; its functional form, plus the appropriate values for the parameters involved, is employed to produce acceptable matrices representing trip making behaviour for many trip purposes and time periods. The work reported in this paper has combined the advantages of acceptable travel demand models with the low cost and availability of traffic counts. Two types of demand models have been used: gravity (GR) and gravity-opportunity (GO) models. Four estimation methods have been analysed and tested to calibrate the transport demand models from traffic counts, namely: Non-Linear-Least-Squares (NLLS), Maximum-Likelihood (ML), Maximum-Entropy (ME) and Bayes-Inference (BI). The Bandung’s Urban Traffic Movement survey has been used to test the developed method. Based on several statistical tests, the estimation methods are found to perform satisfactorily since each calibrated model reproduced the observed matrix fairly closely. The tests were carried out using two assignment techniques, all-or-nothing and equilibrium assignment.  


Sign in / Sign up

Export Citation Format

Share Document