scholarly journals Experimental Study on the Performance of Controllers for the Hydrogen Gas Production Demanded by an Internal Combustion Engine

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2157 ◽  
Author(s):  
Marisol Cervantes-Bobadilla ◽  
Ricardo Escobar-Jiménez ◽  
José Gómez-Aguilar ◽  
Jarniel García-Morales ◽  
Víctor Olivares-Peregrino

This work presents the design and application of two control techniques—a model predictive control (MPC) and a proportional integral derivative control (PID), both in combination with a multilayer perceptron neural network—to produce hydrogen gas on-demand, in order to use it as an additive in a spark ignition internal combustion engine. For the design of the controllers, a control-oriented model, identified with the Hammerstein technique, was used. For the implementation of both controllers, only 1% of the overall air entering through the throttle valve reacted with hydrogen gas, allowing maintenance of the hydrogen–air stoichiometric ratio at 34.3 and the air–gasoline ratio at 14.6. Experimental results showed that the average settling time of the MPC controller was 1 s faster than the settling time of the PID controller. Additionally, MPC presented better reference tracking, error rates and standard deviation of 1.03 × 10 − 7 and 1.06 × 10 − 14 , and had a greater insensitivity to measurement noise, resulting in greater robustness to disturbances. Finally, with the use of hydrogen as an additive to gasoline, there was an improvement in thermal and combustion efficiency of 4% and 0.6%, respectively, and an increase in power of 545 W, translating into a reduction of fossil fuel use.

2021 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Andrej Chríbik ◽  
Marián Polóni ◽  
Ľuboš Magdolen ◽  
Matej Minárik

The aim of the presented article is to analyse the influence of synthesis gas composition on the power, economic, and internal parameters of an atmospheric two-cylinder spark-ignition internal combustion engine (displacement of 686 cm3) designed for a micro-cogeneration unit. Synthesis gases produced mainly from waste contain combustible components as their basic material (methane, hydrogen, and carbon monoxide), as well as inert gases (carbon dioxide and nitrogen). A total of twelve synthesis gases were analysed that fall into the category of medium-energy gases with lower heating value in the range from 8 to 12 MJ/kg. All of the resulting parameters from the operation of the combustion engine powered by synthesis gases were compared with the reference fuel methane. The results show a decrease in the performance parameters for all operating loads and an increase in hourly fuel consumption. Specifically, for the operating speed of the micro-cogeneration unit (1500 L/min), the decrease in power parameters was in the range of 7.1–23.5%; however, the increase in hourly fuel consumption was higher by 270% to 420%. The decrease in effective efficiency ranged from 0.4 to 4.6%, which in percentage terms represented a decrease from 1.3% to 14.5%. The process of fuel combustion was most strongly influenced by the proportion of hydrogen and inert gases in the mixture. It can be concluded that setting up the synthesis gas production in the waste gasification process in order to achieve optimum performance and economic parameters of the combustion engine for a micro cogeneration unit has an influential role and is of crucial importance.


Author(s):  
В. В. Руденко ◽  
И. В. Калужинов ◽  
Н. А. Андрущенко

The presence in operation of many prototypes of UAVs with propeller propellers, the use of such devices at relatively low altitudes and flight speeds makes the problem of noise reduction from UAVs urgent both from the point of view of acoustic imperceptibility and ecology.The aim of the work is to determine a set of methods that help to reduce the visibility of UAVs in the acoustic range. It is shown that the main source of noise from the UAV on the ground is the power plant, which includes the engine and the propeller. The parameters of the power plants influencing the processes that determine the acoustic signature of the UAV were investigated. A comprehensive analysis of the factors affecting visibility was carried out. The power plants include two-stroke and four-stroke engines, internal combustion and two-blade propellers. The use of silencers on the exhaust of the internal combustion engine was considered. The spectral characteristics of the acoustic fields of the propeller-driven power plants for the operating sample of the UAV "Eco" were obtained. The measurements were carried out in one-third octave and 1/48 octave frequency bands under static conditions. The venue is the KhAI airfield. Note that the propellers that were part of the power plants operated at Reynolds numbers (Re0,75<2*105), which can significantly affect its aerodynamic and acoustic characteristics. It is shown that when choosing a UAV control system, one should take into account the fact that two-stroke piston engines are the dominant source in the noise of propeller-driven control systems in the absence of a hood and mufflers in the intake and exhaust tracts. The use of a four-stroke internal combustion engine significantly reduces the noise of the control system. In the general case, the position of the boundaries of the zone of acoustic visibility of a UAV at the location of the observer is determined by the ratio between the intensity of acoustic radiation perceived by the observer from the UAV and the intensity of sound corresponding to the natural acoustic background and depends on the degree of manifestation of acoustic effects accompanying the propagation of sound in a turbulent atmosphere - the refraction of sound waves. Absorption and dissipation of acoustic energy. The calculation and comparison of the UAV detection range was carried out taking into account the existing natural maskers.The results of experimental studies are presented that allow assessing the degree of acoustic signature of the UAV. A set of measures aimed at reducing the intensity of the acoustic signature of the UAV in various regions of the radiation spectrum has been determined.


Author(s):  
Oleksandr Gryshchuk ◽  
Volodymyr Hladchenko ◽  
Uriy Overchenko

This article looks at some comparative statistics on the development and use of electric vehicles (hereinafter referred to as EM) as an example of sales and future sales forecasts for EM in countries that focus on environmental conservation. Examples of financial investments already underway and to be made in the near future by the largest automakers in the development and distribution of EM in the world are given. Steps are taken to improve the environmental situation in countries (for example, the prohibition of entry into the city center), the scientific and applied problem of improving the energy efficiency and environmental safety of the operation of wheeled vehicles (hereinafter referred to as the CTE). The basic and more widespread schemes of conversion of the internal combustion engine car (hereinafter -ICE) to the electric motor car (by replacing the gasoline or diesel electric motor), as well as the main requirements that must be observed for the safe use and operation of the electric vehicle. The problem is solved by justifying the feasibility of re-equipment of the KTZ by replacing the internal combustion engine with an electric motor. On the basis of the statistics collected by the State Automobile Transit Research Institute on the number of issued conclusions of scientific and technical expertise regarding the approval of the possibility of conversion of a car with an internal combustion engine (gasoline or diesel) to a car with an electric motor (electric vehicle), the conclusions on the feasibility of such conclusion were made. Keywords: electricvehicles, ecological safety, electricmotor, statistics provided, car, vehicle by replacing.


Sign in / Sign up

Export Citation Format

Share Document