scholarly journals Short-Term Load Interval Prediction Using a Deep Belief Network

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2744 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Zhe Shu ◽  
Rui Wang ◽  
Tao Zhang ◽  
Yabing Zha

In load predication, point-based forecasting methods have been widely applied. However, uncertainties arising in load predication bring significant challenges for such methods. This therefore drives the development of new methods amongst which interval predication is one of the most effective. In this study, a deep belief network-based lower–upper bound estimation (LUBE) approach is proposed, and a genetic algorithm is applied to reinforce the search ability of the LUBE method, instead of simulated an annealing algorithm. The approach is applied to the short-term load prediction on some realistic electricity load data. To demonstrate the effectiveness and efficiency of the proposed method, it is compared with three state-of-the-art methods. Experimental results show that the proposed approach can significantly improve the predication accuracy.

Author(s):  
Sanam Narejo ◽  
Eros Pasero ◽  
Farzana Kulsoom

<p>A Brain-Computer Interface (BCI) provides an alternative communication interface between the human brain and a computer. The Electroencephalogram (EEG) signals are acquired, processed and machine learning algorithms are further applied to extract useful information.  During  EEG acquisition,   artifacts  are induced due to involuntary eye movements or eye blink, casting adverse effects  on system performance. The aim of this research is to predict eye states from EEG signals using Deep learning architectures and present improved classifier models. Recent studies reflect that Deep Neural Networks are trending state of the art Machine learning approaches. Therefore, the current work presents the implementation of  Deep Belief Network (DBN) and Stacked AutoEncoders (SAE) as Classifiers with encouraging performance accuracy.  One of the designed  SAE models outperforms the  performance of DBN and the models presented in existing research by an impressive error rate of 1.1% on the test set bearing accuracy of 98.9%. The findings in this study,  may provide a contribution towards the state of  the  art performance on the problem of  EEG based eye state classification.</p>


Sign in / Sign up

Export Citation Format

Share Document