scholarly journals Reduction of Structural Loads in Wind Turbines Based on an Adapted Control Strategy Concerning Online Fatigue Damage Evaluation Models

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3429
Author(s):  
Nejra Beganovic ◽  
Jackson Njiri ◽  
Dirk Söffker

In recent years, the rapidly-increasing demand for energy generation from renewable resources has been noticeable. Additional requirements are consequently set on Wind Turbine (WT) systems, primarily reflected in WT size and power rating increases. With the size increase of WT, structural loads/fatigue stress on the wind turbine become larger, simultaneously leading to its accelerated aging and the shortening of its lifetime. The primary goal of this contribution is to establish an approach for structural load reduction while retaining or slightly sacrificing the power production requirements. The approach/control strategy includes knowledge about current fatigue damage and/or damage increments and consists of multi-input multi-output controllers with variable control parameters. By the appropriate selection of the designed Multi-Input Multi-Output (MIMO) controllers, the mitigation of structural loads in accordance with a predefined range of accumulated fatigue damage or damage increments, exactly to the extent required to provide a predefined service lifetime, is obtained. The validation of the aforementioned control strategy is based on the simulation results and the WT model developed by National Renewable Energy Laboratory (NREL). The obtained results prove the efficiency of the proposed control strategy with respect to the reduction of rotor blade bending moments, simultaneously exhibiting no significant impact on the resulting power generation.

Wind Energy ◽  
2015 ◽  
Vol 19 (7) ◽  
pp. 1289-1306 ◽  
Author(s):  
C. Tibaldi ◽  
L. C. Henriksen ◽  
M. H. Hansen ◽  
C. Bak

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2287
Author(s):  
Kaina Qin ◽  
Shanshan Wang ◽  
Zhongjian Kang

With the rapid increase in the proportion of the installed wind power capacity in the total grid capacity, the state has put forward higher and higher requirements for wind power integration into the grid, among which the most difficult requirement is the zero-voltage ride through (ZVRT) capability of the wind turbine. When the voltage drops deeply, a series of transient processes, such as serious overvoltage, overcurrent, or speed rise, will occur in the motor, which will seriously endanger the safe operation of the wind turbine itself and its control system, and cause large-scale off-grid accident of wind generator. Therefore, it is of great significance to improve the uninterrupted operation ability of the wind turbine. Doubly fed induction generator (DFIG) can achieve the best wind energy tracking control in a wide range of wind speed and has the advantage of flexible power regulation. It is widely used at present, but it is sensitive to the grid voltage. In the current study, the DFIG is taken as the research object. The transient process of the DFIG during a fault is analyzed in detail. The mechanism of the rotor overcurrent and DC bus overvoltage of the DFIG during fault is studied. Additionally, the simulation model is built in DIgSILENT. The active crowbar hardware protection circuit is put into the rotor side of the wind turbine, and the extended state observer and terminal sliding mode control are added to the grid side converter control. Through the cooperative control technology, the rotor overcurrent and DC bus overvoltage can be suppressed to realize the zero-voltage ride-through of the doubly fed wind turbine, and ensure the safe and stable operation of the wind farm. Finally, the simulation results are presented to verify the theoretical analysis and the proposed control strategy.


2012 ◽  
Vol 512-515 ◽  
pp. 788-793
Author(s):  
Xiao Hua Zhou ◽  
Ming Qiang Wang ◽  
Wei Wei Zou

Traditional decoupling control strategy of doubly-fed induction generator (DFIG) wind turbine makes little contribution to system inertia and do not participate in the system frequency control, the synchronization of large-scale wind power requires wind turbine have the ability to participate in the regulation of power system frequency. This paper adds a frequency control segment to traditional DFIG wind turbine and considers the doubly-fed wind turbine operating on the state of the super-synchronous speed, by analysis the effect of inertia and proportional control strategies, a fuzzy control strategy which combines the advantages of the former two control strategies is proposed, simulation results show that this control strategy can more effectively improve the system frequency response.


Sign in / Sign up

Export Citation Format

Share Document