scholarly journals Experimental Study on the Evaporation and Condensation Heat Transfer Characteristics of a Vapor Chamber

Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 11
Author(s):  
Yanfei Liu ◽  
Xiaotian Han ◽  
Chaoqun Shen ◽  
Feng Yao ◽  
Mengchen Zhang

A vapor chamber can meet the cooling requirements of high heat flux electronic equipment. In this paper, based on a proposed vapor chamber with a side window, a vapor chamber experimental system was designed to visually study its evaporation and condensation heat transfer performance. Using infrared thermal imaging technology, the temperature distribution and the vapor–liquid two-phase interface evolution inside the cavity were experimentally observed. Furthermore, the evaporation and condensation heat transfer coefficients were obtained according to the measured temperature of the liquid near the evaporator surface and the vapor near the condenser surface. The effects of heat load and filling rate on the thermal resistance and the evaporation and condensation heat transfer coefficients are analyzed and discussed. The results indicate that the liquid filling rate that maximized the evaporation heat transfer coefficient was different from the liquid filling rate that maximized the condensation heat transfer coefficient. The vapor chamber showed good heat transfer performance with a liquid filling rate of 33%. According to the infrared thermal images, it was observed that the evaporation/boiling heat transfer could be strengthened by the interference of easily broken bubbles and boiling liquid. When the heat input increased, the uniformity of temperature distribution was improved due to the intensified heat transfer on the evaporator surface.

2015 ◽  
Vol 1779 ◽  
pp. 39-44 ◽  
Author(s):  
Jan Mary Baloyo ◽  
Yuyuan Zhao

ABSTRACTThe heat transfer coefficients of homogeneous and hybrid micro-porous copper foams, produced by the Lost Carbonate Sintering (LCS) process, were measured under one-dimensional forced convection conditions using water coolant. In general, increasing the water flow rate led to an increase in the heat transfer coefficients. For homogeneous samples, the optimum heat transfer performance was observed for samples with 60% porosity. Different trends in the heat transfer coefficients were found in samples with hybrid structures. Firstly, for horizontal bilayer structures, placing the high porosity layer by the heater gave a higher heat transfer coefficient than the other way round. Secondly, for integrated vertical bilayer structures, having the high porosity layer by the water inlet gave a better heat transfer performance. Lastly, for segmented vertical bilayer samples, having the low porosity layer by the water inlet offered the greatest heat transfer coefficient overall, which is five times higher than its homogeneous counterpart.


2008 ◽  
Author(s):  
Pradeep A. Patil ◽  
S. N. Sapali

An experimental test facility is designed and built to calculate condensation heat transfer coefficients and pressure drops for HFC-134a, R-404A, R-407C, R-507A in a smooth and micro-fin tube. The main objective of the experimentation is to investigate the enhancement in condensation heat transfer coefficient and increase in pressure drop using micro-fin tube for different condensing temperatures and further to develop an empirical correlation for heat transfer coefficient and pressure drop, which takes into account the micro-fin tube geometry, variation of condensing temperature and temperature difference (difference between condensing temperature and average temperature of cooling medium). The experimental setup has a facility to vary the different operating parameters such as condensing temperature, cooling water temperature, flow rate of refrigerant and cooling water etc and study their effect on heat transfer coefficients and pressure drops. The hermetically sealed reciprocating compressor is used in the system, thus the effect of lubricating oil on the heat transfer coefficient is taken in to account. This paper reports the detailed description of design and development of the test apparatus, control devices, instrumentation, and the experimental procedure. It also covers the comparative study of experimental apparatus with the existing one from the available literature survey. The condensation and pressure drop of HFC-134a in a smooth tube are measured and obtained the values of condensation heat transfer coefficients for different mass flux and condensing temperatures using modified Wilson plot technique with correlation coefficient above 0.9. The condensation heat transfer coefficient and pressure drop increases with increasing mass flux and decreases with increasing condensing temperature. The results are compared with existing available correlations for validation of test facility. The experimental data points have good association with available correlations except Cavallini-Zecchin Correlation.


Author(s):  
Ramana Saketh Vanga ◽  
Sunwoo Kim

Renewable energy systems operated by a thermal energy resource such as geothermal power plants and solar thermal power systems are demanding improvement in their condensation performance [Kutscher & Costenaro, 2009]. While their energy resources are naturally obtained at almost no cost, heat rejecting components become relatively expensive to maintain and operate. In this research, a heterogeneous condensing surface is proposed to enhance the condensation heat transfer coefficient in vapor-to-liquid heat exchangers. On its surface, parallel stripes with hydrophobic feature and ones without it alternate. The effect of the partially hydrophobic condensing surface on the dropwise condensation heat transfer of saturated steam on the flat plate copper surface is experimentally investigated. A vertical flat plat condenser is constructed to evaluate the performance of the heterogeneous condensing surface in comparison with a plain copper sample and a homogeneous hydrophobic-treated copper sample. Experimental results show that condensation heat transfer of steam on the homogeneous hydrophobic-treated sample is superior to that on the plain copper surface despite the fact that both the surfaces stably promote dropwise condensation. The heat transfer coefficients for the heterogeneous surface at lower subcooling temperatures, when its stripes situate horizontally, are as high as the heat transfer coefficients for the homogeneous hydrophobic-treated surface. The enhancement for the horizontal heterogeneous sample over the plain copper sample is approximately 100%. The heat transfer coefficient for the heterogeneous sample with its stripes being vertical at 4 K subcooling is 25% greater than that of the plain copper sample. Higher heat transfer coefficients are observed at lower subcooling temperatures for all the samples. The results and observations of this project suggest that the heterogeneous surface has the potential to enhance the heat transfer coefficients.


Author(s):  
Claire M. Kunkle ◽  
Jordan P. Mizerak ◽  
Van P. Carey

The development of hydrophilic surface coatings for enhanced wetting characteristics has led to improvement in heat transfer metrics like impinging droplet vaporization time and the heat transfer coefficient. Hydrothermal synthesis, a method of developing hydrophilic surfaces, has been previously shown to produce high performing heat transfer surfaces on copper substrates [1]. Our study applied this production method to aluminum substrates, which have the advantage of being cheaper, lighter, and a more widely used for heat sinks than copper. Previous experiments have shown that water droplets on ZnO nanostructure coated surfaces, at low superheats, evaporate via thin film evaporation rather than nucleate boiling. This leads to heat transfer coefficients as much as three times higher than nucleate boiling models for the same superheat. Our nanocoated aluminum surfaces exhibit superhydrophilicity with an average droplet liquid film thickness of 20–30 microns, which can produce heat transfer coefficients of over 25 kW/m2K. This study discusses characterization of ZnO nanostructured aluminum surfaces to better understand the related mechanisms which lead to such high heat transfer performance. All ZnO nanostructured aluminum surfaces produced for this study exhibited superhydrophilicity, with sessile droplet contact angles of less than 5 degrees. The challenge of achieving accuracy for such low contact angles led to the development of a new wetting metric related to the droplet’s wetted area on a surface rather than the contact angle. This new metric is predicated on the the fact that heat transfer performance is directly related to this wetted area, thickens, and shape of the expanding droplet footprint. Shape irregularity of droplets on these superhydrophilic surfaces is discussed in this study, where there appears to be advantages to irregular spreading compared with surfaces that produce symmetric radial spreading. One form of irregular spreading consists of liquid droplets spreading out both on top of the surface and within the microstructure of the surface coating. The liquid within the microstructure forms films less than 5 microns thick, making local heat transfer coefficients of greater than 100 kW/m2K possible. SEM microscope imaging provided additional insight to the underlying mechanisms which cause these surfaces to produce such exceptional spreading as well as irregular spreading, resulting in very good heat transfer performance. Experimental work was coupled with computational analysis to model the contact line of the droplet footprint. Image processing of experimental photos helps to analyze spreading characteristics, which can be directly related to heat transfer due to film thickness at various points during spreading. Approaches used to characterize these superhydrophilic surfaces advance understanding of the connections between nanoscale structural elements and macroscale performance characteristics in heat transfer. This understanding can reveal key insights for developing even better high performance surfaces for a broad range of applications.


Author(s):  
Eric A. Browne ◽  
Gregory J. Michna ◽  
Michael K. Jensen ◽  
Yoav Peles

The heat transfer performance of two microjet arrays using degassed deionized water was investigated. The in-line jet arrays had a spacing of 250 μm, a standoff of 200 μm, and diameters of 54 and 112 μm. Average heat transfer coefficients were obtained for 150 < Red < 3300 and ranged from 80,000 to 414,000 W/m2-K. A heat flux of 1,110 W/cm2 was attained with 23 °C water and a surface temperature of 50 °C.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Eric A. Browne ◽  
Gregory J. Michna ◽  
Michael K. Jensen ◽  
Yoav Peles

The heat transfer performance of two microjet arrays was investigated using degassed deionized water and air. The inline jet arrays had diameters of 54 μm and 112 μm, a spacing of 250 μm, a standoff of 200 μm (S/d=2.2 and 4.6, H/d=1.8 and 3.7), and jet-to-heater area ratios from 0.036 to 0.16. Average heat transfer coefficients with deionized water were obtained for 150≤Red≤3300 and ranged from 80,000 W/m2 K to 414,000 W/m2 K. A heat flux of 1110 W/cm2 was attained with 23°C inlet water and an average surface temperature of 50°C. The Reynolds number range for the same arrays with air was 300≤Red≤4900 with average heat transfer coefficients of 2500 W/m2 K to 15,000 W/m2 K. The effect of the Mach number on the area-averaged Nusselt number was found to be negligible. The data were compared with available correlations for submerged jet array heat transfer.


1990 ◽  
Vol 112 (4) ◽  
pp. 287-292 ◽  
Author(s):  
P. F. Monaghan ◽  
D. P. Finn ◽  
P. H. Oosthuizen

This paper deals with measurement of heat transfer performance of wind convectors, an alternative air source evaporator system for heat pumps. An automatically controlled and monitored outdoor wind convector test facility that is capable of measuring heat transfer rates and overall heat-transfer coefficients to within ± 5 percent measurement uncertainty for up to three wind convectors has been designed, built, and tested. Data on air temperature and humidity, solar radiation, and wind speed and direction are simultaneously collected. The choice of measurement technique for each variable and an error analysis for each sensor is discussed. Typical graphical test results are presented.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Satish G. Kandlikar ◽  
Theodore Widger ◽  
Ankit Kalani ◽  
Valentina Mejia

Flow boiling in microchannels has been extensively studied in the past decade. Instabilities, low critical heat flux (CHF) values, and low heat transfer coefficients have been identified as the major shortcomings preventing its implementation in practical high heat flux removal systems. A novel open microchannel design with uniform and tapered manifolds (OMM) is presented to provide stable and highly enhanced heat transfer performance. The effects of the gap height and flow rate on the heat transfer performance have been experimentally studied with water. The critical heat fluxes (CHFs) and heat transfer coefficients obtained with the OMM are significantly higher than the values reported by previous researchers for flow boiling with water in microchannels. A record heat flux of 506 W/cm2 with a wall superheat of 26.2 °C was obtained for a gap size of 0.127 mm. The CHF was not reached due to heater power limitation in the current design. A maximum effective heat transfer coefficient of 290,000 W/m2 °C was obtained at an intermediate heat flux of 319 W/cm2 with a gap of 0.254 mm at 225 mL/min. The flow boiling heat transfer was found to be insensitive to flow rates between 40–333 mL/min and gap sizes between 0.127–1.016 mm, indicating the dominance of nucleate boiling. The OMM geometry is promising to provide exceptional performance that is particularly attractive in meeting the challenges of high heat flux removal in electronics cooling applications.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012038
Author(s):  
Z Y Kong ◽  
H R Xie ◽  
Y K Cai ◽  
X Tan ◽  
S Hokoi ◽  
...  

Abstract Rising damp is common in brick buildings due to groundwater and natural precipitation, which not only causes deterioration of the walls, but also significantly affects the heat transfer coefficient, thermal inertia, and building energy consumption. In order to clarify the effects of rising damp on the heat transfer through traditional Chinese brick solid wall and cavity walls, two types of wall of 1.2 m wide and 3 m high were built in the laboratory. The heat transfer performance under the influence of capillary rising was tested by Simple heating box – heat flow meter method. Based on the data obtained from the experiment, the Energyplus was used to simulate the energy consumption of a Chinese typical residential building influenced by rising damp. The results proposed 3.67 W/m2·K and 3.61 W/m2·K as the recommended heat transfer coefficient for the moisture affected parts in the experimental solid and cavity wall, and the rising capillary water increased the heat transfer coefficients by 74% and 84%, respectively. The heating and cooling load of the solid-wall building under the influence of capillary water increased by 18.5% and 29.6%, respectively, while of cavity-walls building increased by 6.5% and 11.8%.


Sign in / Sign up

Export Citation Format

Share Document