scholarly journals Analysis on Thermal Performance of Ground Heat Exchanger According to Design Type Based on Thermal Response Test

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 651 ◽  
Author(s):  
Sang Bae ◽  
Yujin Nam ◽  
Jong Choi ◽  
Kwang Lee ◽  
Jae Choi

A ground source heat pump (GSHP) system has higher performance than air source heat pump system due to the use of more efficient ground heat source. However, the GSHP system performance depends on ground thermal properties and groundwater conditions. There are many studies on the improvement of GSHP system by developing ground heat exchanger (GHX) and heat exchange method. Several studies have suggested methods to improve heat exchange rate for the development of GHX. However, few real-scale experimental studies have quantitatively analyzed their performance using the same ground conditions. Therefore, the objective of this study was to evaluate the thermal performance of various pipe types of GHX by the thermal response test (TRT) under the same field and test conditions. Four kinds of GHX (HDPE type, HDPE-nano type, spiral fin type, and coaxial type) were constructed in the same site. Inlet and outlet temperatures of GHXs and effective thermal conductivity were measured through the TRT. In addition, the borehole thermal resistance was calculated to comparatively analyze the correlation of the heat exchange performance with each GHX. Result of the TRT revealed that averages effective thermal conductivities of HDPE type, HDPE-nano, spiral fin type, and coaxial type GHX were 2.25 W/m·K, 2.34 W/m·K, 2.55 W/m·K, and 2.16 W/m·K, respectively. In the result, it was found that the average borehole thermal resistance can be an important factor in TRT, but the effect of increased thermal conductivity of pipe material itself was not significant.

Author(s):  
Wenzhi Cui ◽  
Quan Liao ◽  
Guiqin Chang ◽  
Qingyuan Peng ◽  
Tien-Chien Jen

The design and performance optimization of ground source heat pump (GSHP) systems need the exact thermal properties of the soil, such as ground thermal conductivity and capacity, and the borehole thermal resistance of borehole heat exchanger (BHE). In-situ thermal response test (TRT) is the most widely used method to determine the overall thermal physical properties of the geological structure around the borehole. A TRT experimental apparatus has been developed and thermal response test was performed in Chongqing, southwest China. Both single-U and double-U borehole heat exchangers are studied in this work. The test duration is about 70 hours. Data direct fitting and parameter estimate method are both used to determine the soil thermal conductivity and the borehole thermal resistance. The results showed that the average ground thermal conductivity of the test region for single U and double U BHE conditions are 2.55 and 2.51 Wm−1K−1, and borehole thermal resistance are 0.116 and 0.066 mKW−1, respectively.


2019 ◽  
Vol 27 (02) ◽  
pp. 1950015 ◽  
Author(s):  
Keun Sun Chang ◽  
Young Jae Kim ◽  
Min Jun Kim

The standing column well (SCW) for ground source heat pump (GSHP) systems is a highly promising technology with its high heat capacity and efficiency. In this study, a large-scale thermal response tester has been built, which is capable of imposing a wide range of heat on the SCW ground heat exchangers and measuring time responses of their thermal parameters. Two standing column wells in one site but with different well hydrological and geological conditions are tested to study their effects on the thermal performances. Borehole thermal resistance ([Formula: see text]) and the effective thermal conductivity ([Formula: see text]) are derived from data obtained from the thermal response test (TRT) by using a line source method. Results show that the influence of groundwater movement on the thermal conductivity of the SCW is not very significant (3.6% difference between two different geological conditions). This indicates that results of one TRT measurement can be applied to other SCWs in the same site, with which considerable time and cost are saved. The increase of circulation flow rate enhances the ground thermal conductivity moderately (4.5% increase with flow rate increase of 45%), but the borehole thermal resistance is substantially lowered (about 25.9%).


2017 ◽  
Vol 25 (01) ◽  
pp. 1750006 ◽  
Author(s):  
Keun Sun Chang ◽  
Min Jun Kim ◽  
Young Jae Kim

In recent years, application of the standing column well (SCW) ground heat exchanger (GHX) has been noticeably increased as a heat transfer mechanism of ground source heat pump (GSHP) systems with its high heat capacity and efficiency. Determination of the ground thermal properties is an important task for sizing and estimating cost of the GHX. In this study, an in situ thermal response test (TRT) is applied to the thermal performance evaluation of SCW. Two SCWs with different design configurations are installed in sequence to evaluate their effects on the thermal performance of SCW using a single borehole. A line source method is used to derive the effective thermal conductivity and borehole thermal resistance. Effects of operating parameters are also investigated including bleed, heat injection rate, flow rate and filler height. Results show that the effective thermal conductivity of top drawn SCW (Type A) is 11.7% higher than that of bottom drawn SCW (Type B) and of operating parameters tested bleed is the most significant one for the improvement of the thermal performance (40.4% enhanced in thermal conductivity with 10.9% bleed).


2013 ◽  
Vol 732-733 ◽  
pp. 103-108 ◽  
Author(s):  
Han Byul Kang ◽  
Seok Yoon ◽  
Gyu Hyun Go ◽  
Seung Rae Lee

The Ground-Coupled or Source Heat Pump (GCHP/GSHP) system is increasingly being considered as an alternative to traditional cooling/heating system because it can reduce the emission of greenhouse gases. The GCHP/GSHP system uses sustainable ground temperature to emit heat during the summer and to extract heat during the winter. It is a ubiquitous system because it can be used at any time or place and semi-permanent energy. The geothermal system is composed of Ground Heat Exchanger (GHE), heat pump and load facilities. The GHE is embedded in a borehole, which is made up of GHE and grout. The borehole thermal resistance is the most important parameter in designing the geothermal system because it shows the quantity of heat transfer in the borehole. There are many methods to estimate the borehole thermal resistance. Thermal Performance Tests (TPTs) were conducted to directly measure the borehole thermal resistance of several kinds of GHEs. Then the experiment results and analytical results were compared in order to select the most accurate methods to evaluate the borehole thermal resistance.


Author(s):  
Ali H. Tarrad ◽  

The ground heat exchanger plays a major role in the thermal performance and economic optimization of the ground-coupled heat pump. The present study focuses on the effect of the borehole size and the grout and soil thermal properties on the thermal assessment of these heat exchangers. A double U-tube heat exchanger was studied numerically by the COMSOL Multiphysics 5.4 software in a 3-dimensional discretization model. The double U-tube was circuited as a parallel flow arrangement and situated in a parallel configuration (PFPD) deep in the borehole. The grout and ground thermal conductivities were selected in the range of (0.73-2.0) W/m.K and (1.24-2.8) W/m.K respectively. The results revealed that the ground thermal conductivity showed a more pronounced influence on the thermal performance of the ground heat exchanger and with less extent for the grouting one. Increasing the grout filling thermal conductivity from (0.73) W/m.K to (2.0) W/m.K at a fixed ground thermal conductivity of (2.4) W/m.K has augmented the heat transfer rate by (10) %. The heat transfer rate of the ground heat exchanger exhibited marked enhancement as much as double when the ground thermal conductivity was increased from (1.24) W/m.K to (2.8) W/m.K at fixed grout thermal conductivity range of (0.78-2.0) W/m.K. It has been verified that increasing the borehole size has a negligible effect on the ground heat exchanger thermal performance when a grout with a high thermal conductivity was utilized in the ranged of examined configurations. The steady-state numerical analysis model outcomes of the present work could be implemented for the preliminary borehole design for a ground heat exchanger.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1893
Author(s):  
Kwonye Kim ◽  
Jaemin Kim ◽  
Yujin Nam ◽  
Euyjoon Lee ◽  
Eunchul Kang ◽  
...  

A ground source heat pump system is a high-performance technology used for maintaining a stable underground temperature all year-round. However, the high costs for installation, such as for boring and drilling, is a drawback that prevents the system to be rapidly introduced into the market. This study proposes a modular ground heat exchanger (GHX) that can compensate for the disadvantages (such as high-boring/drilling costs) of the conventional vertical GHX. Through a real-scale experiment, a modular GHX was manufactured and buried at a depth of 4 m below ground level; the heat exchange rate and the change in underground temperatures during the GHX operation were tracked and calculated. The average heat exchanges rate was 78.98 W/m and 88.83 W/m during heating and cooling periods, respectively; the underground temperature decreased by 1.2 °C during heat extraction and increased by 4.4 °C during heat emission, with the heat pump (HP) working. The study showed that the modular GHX is a cost-effective alternative to the vertical GHX; further research is needed for application to actual small buildings.


2011 ◽  
Vol 374-377 ◽  
pp. 398-404 ◽  
Author(s):  
Ying Ning Hu ◽  
Ban Jun Peng ◽  
Shan Shan Hu ◽  
Jun Lin

A hot-water and air-conditioning (HWAC) combined ground sourse heat pump(GSHP) system with horizontal ground heat exchanger self-designed and actualized was presented in this paper. The heat transfer performance for the heat exchanger of two different pipe arrangements, three layers and four layers, respectively, was compared. It showed that the heat exchange quantity per pipe length for the pipe arrangement of three layers and four layers are 18.0 W/m and 15.0 W/m. The coefficient of performance (COP) of unit and system could remain 4.8 and 4.2 as GSHP system for heating water, and the COP of heating and cooling combination are up to 8.5 and 7.5, respectively. The power consumption of hot-water in a whole year is 9.0 kwh/t. The economy and feasibility analysis on vertical and horizontal ground heat exchanger were made, which showed that the investment cost per heat exchange quantity of horizontal ground heat exchanger is 51.4% lower than that of the vertical ground heat exchanger, but the occupied area of the former is 7 times larger than the latter's.


Sign in / Sign up

Export Citation Format

Share Document