Near-Wake Flow Simulations for a Mid-Sized Rim Driven Wind Turbine

2013 ◽  
Author(s):  
Bryan Kaiser ◽  
Svetlana Poroseva ◽  
Erick L. Johnson ◽  
Rob Hovsapian
Author(s):  
Pengyin Liu ◽  
Jinge Chen ◽  
Shen Xin ◽  
Xiaocheng Zhu ◽  
Zhaohui Du

In this paper, a slotted tip structure is experimentally analyzed. A wind turbine with three blades, of which the radius is 301.74mm, is investigated by the PIV method. Each wind turbine blade is formed with a slots system comprising four internal tube members embedded in the blade. The inlets of the internal tube member are located at the leading edge of the blade and form an inlet array. The outlets are located at the blade tip face and form an outlet array. The near wake flow field of the wind turbine with slotted tip and without slotted tip are both measured. Velocity field of near wake region and clear images of the tip vortex are captured under different wake ages. The experimental results show that the radius of the tip vortex core is enlarged by the slotted tip at any wake age compared with that of original wind turbine. Moreover, the diffusion process of the tip vortex is accelerated by the slotted tip which lead to the disappearance of the tip vortex occurs at smaller wake age. The strength of the tip vortex is also reduced indicating that the flow field in the near wake of wind turbine is improved. The experimental data are further analyzed with the vortex core model to reveal the flow mechanism of this kind of flow control method. The turbulence coefficient of the vortex core model for wind turbine is obtained from the experimental data of the wind turbine with and without slotted tip. It shows that the slotted tip increases the turbulence strength in the tip vortex core by importing airflow into the tip vortex core during its initial generation stage, which leads to the reduction of the tip vortex strength. Therefore, it is promising that the slotted tip can be used to weaken the vorticity and accelerate the diffusion of the tip vortex which would improve the problem caused by the tip vortex.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5248
Author(s):  
Weimin Wu ◽  
Xiongfei Liu ◽  
Jingcheng Liu ◽  
Shunpeng Zeng ◽  
Chuande Zhou ◽  
...  

The dynamic yaw motion of the wind turbine will affect the overall aerodynamic performance of the impeller and the corresponding wake flow, but the current research on this issue is inadequate. Thus, it is very necessary to study the complicated near-wake aerodynamic behaviors during the yaw process and the closely related blade aerodynamic characteristics. This work utilized the multi-relaxation time lattice Boltzmann (MRT-LBM) model to investigate the integral aerodynamic performance characteristics of the specified impeller and the dynamic changes in the near wake under a sine yawing process, in which the normalized result is adopted to facilitate data comparison and understanding. Moreover, considering the complexity of the wake flows, the large eddy simulation (LES) and wall-adapting local eddy-viscosity (WALE) model are also used in this investigation. The related results indicate that the degree of stability of tip spiral wake in the dynamic yaw condition is inversely related to the absolute value of the change rate of yaw angular speed. When the wind turbine returns to the position with the yaw angle of 0 (deg) around, the linearized migration of tip vortex is changed, and the speed loss in the wake center is reduced at about the normalized velocity of 0.27, and another transverse expansion appeared. The directional inducing downstream of the impeller sweep surface for tip vortex is clearly reflected on the entering side and the exiting side. Additionally, the features of the static pressure on the blade surface and the overall aerodynamic effects of the impeller are also discussed, respectively.


Author(s):  
Yuntian Ge ◽  
Xiuling Wang

Wind turbines rotation was motivated by the force of wind. In reality, wind doesn’t moving vertically to the wind turbine rotation plane, but in random directions instead. Therefore, the yawed effect has to be taken into consideration when study wind turbine aerodynamic performance. The purpose of this study is to compare the difference between the wind turbine near wake flow with yawed effect and without yawed effect aerodynamically. The research uses CFD technology to simulate the rotation movement and air flow pattern, which is completed in software Ansys Workbench.


2013 ◽  
Vol 718-720 ◽  
pp. 1811-1815 ◽  
Author(s):  
Xiang Gao ◽  
Jun Hu ◽  
Zhi Qiang Wang

A three-dimensional horizontal axis wind turbine model was experimentally studied. The experiment was carried out in a laboratory wind tunnel. With PIV measurement, details about flow fields in the near wakeof the turbine blade were obtained. The result shows vortices generateon the tailing edge of the blade, and propagatedownstream then dissipate into small vortices. Vortices also generate at the tip of the blade, propagate downstream and along the radial direction then dissipate. The dissipation of the tip vortex is slower than the former. We also find that the wake of turbine blade rotates in the opposite direction of the blade.


Author(s):  
Ahmet Ozbay ◽  
Wei Tian ◽  
Hui Hu

An experimental study was carried out to investigate the aeromechanics and wake characteristics of dual-rotor wind turbines (DRWTs) with co- and counter-rotating configurations, in comparison to those of a conventional singlerotor wind turbine (SRWT), in order to elucidate the underlying physics to explore/optimize design of wind turbines for higher power yield and better durability. The experiments were performed in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) wind tunnel under neutral stability conditions. In addition to measuring the power output performance of DRWT and SRWT systems, static and dynamic wind loads acting on those systems were also investigated. Furthermore, a high resolution PIV system was used for detailed near wake flow field measurements (free-run and phase-locked) so as to quantify the near wake turbulent flow structures and observe the transient behavior of the unsteady vortex structures in the wake of DRWT and SRWT systems. In the light of the promising experimental results on DRWTs, this study can be extended further to investigate the turbulent flow in the far wake of DRWTs and utilize multiple DRWTs in different wind farm operations.


2015 ◽  
Vol 7 (4) ◽  
pp. 043143 ◽  
Author(s):  
Jeffrey D. Mirocha ◽  
Daniel A. Rajewski ◽  
Nikola Marjanovic ◽  
Julie K. Lundquist ◽  
Branko Kosović ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document