scholarly journals Research on Cooperative Planning of Distributed Generation Access to AC/DC Distribution (Micro) Grids Based on Analytical Target Cascading

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1847 ◽  
Author(s):  
Hao Pan ◽  
Ming Ding ◽  
Rui Bi ◽  
Lei Sun

With the wide application of distributed generation (DG) and the rapid development of alternating current/direct current (AC/DC) hybrid microgrids, the optimal planning of distributed generation connecting to AC/DC distribution networks/microgrids has become an urgent problem to resolve. This paper presents a collaborative planning method for distributed generation access to AC/DC distribution (micro) grids. Based on the grid structure of the AC/DC distribution network, the typical interconnection structure of the AC/DC hybrid microgrid and AC/DC distribution network is designed. The optimal allocation models of distributed power supply for the AC/DC distribution network and microgrid are established based on analytical target cascading. The power interaction between the distribution network and microgrid is used to establish a coupling relationship, and the augmented Lagrangian penalty function is used to solve the collaborative programming problem. The results of distributed power supply allocation are obtained, solving the problem so that distribution generation with different capacity levels is connected to the power grid system in a single form.

Author(s):  
Xin Shen ◽  
Hongchun Shu ◽  
Min Cao ◽  
Nan Pan ◽  
Junbin Qian

In distribution networks with distributed power supplies, distributed power supplies can also be used as backup power sources to support the grid. If a distribution network contains multiple distributed power sources, the distribution network becomes a complex power grid with multiple power supplies. When a short-circuit fault occurs at a certain point on the power distribution network, the size, direction and duration of the short-circuit current are no longer single due to the existence of distributed power, and will vary with the location and capacity of the distributed power supply system. The change, in turn, affects the current in the grid, resulting in the generation and propagation of additional current. This power grid of power electronics will cause problems such as excessive standard mis-operation, abnormal heating of the converter and component burnout, and communication system failure. It is of great and practical significance to study the influence of distributed power in distributed power distribution networks.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2608 ◽  
Author(s):  
Zhong Shi ◽  
Zhijie Wang ◽  
Yue Jin ◽  
Nengling Tai ◽  
Xiuchen Jiang ◽  
...  

In recent years, distributed generation (DG) has developed rapidly. Renewable energy, represented by wind energy and solar energy, has been widely studied and utilized. At present, most distributed generators follow the principle of “installation is forgetting” after they are connected to a distribution network. This principle limits the popularization and benefit of distributed generation to a great extent. In order to solve these problems, this paper presents a two-tier model for optimal allocation of distributed power sources in active distribution networks (ADN). The objective of upper level planning is to minimize the annual comprehensive cost of distribution networks, and the objective of lower level planning is to minimize the active power cut-off of distributed generation through active management mode. Taking into account the time series characteristics of load and distributed power output, the improved K-means clustering method is used to cluster wind power and the photovoltaic output in different scenarios to get the daily curves in typical scenarios, and a bilevel programming model of distributed generation based on multiscenario analysis is established under active management mode. The upper level programming model is solved by Quantum genetic algorithm (QGA), and the lower level programming model is solved by the primal dual interior point method (PDIPM). The rationality of the model and the effectiveness of the algorithm are verified by simulation and analysis of a 33-bus distribution network.


Author(s):  
Jitendra Singh Bhadoriya ◽  
Atma Ram Gupta

Abstract In recent times, producing electricity with lower carbon emissions has resulted in strong clean energy incorporation into the distribution network. The technical development of weather-driven renewable distributed generation units, the global approach to reducing pollution emissions, and the potential for independent power producers to engage in distribution network planning (DNP) based on the participation in the increasing share of renewable purchasing obligation (RPO) are some of the essential reasons for including renewable-based distributed generation (RBDG) as an expansion investment. The Grid-Scale Energy Storage System (GSESS) is proposed as a promising solution in the literature to boost the energy storage accompanied by RBDG and also to increase power generation. In this respect, the technological, economic, and environmental evaluation of the expansion of RBDG concerning the RPO is formulated in the objective function. Therefore, a novel approach to modeling the composite DNP problem in the regulated power system is proposed in this paper. The goal is to increase the allocation of PVDG, WTDG, and GSESS in DNP to improve the quicker retirement of the fossil fuel-based power plant to increase total profits for the distribution network operator (DNO), and improve the voltage deviation, reduce carbon emissions over a defined planning period. The increment in RPO and decrement in the power purchase agreement will help DNO to fulfill round-the-clock supply for all classes of consumers. A recently developed new metaheuristic transient search optimization (TSO) based on electrical storage elements’ stimulation behavior is implemented to find the optimal solution for multi-objective function. The balance between the exploration and exploitation capability makes the TSO suitable for the proposed power flow problem with PVDG, WTDG, and GSESS. For this research, the IEEE-33 and IEEE-69 low and medium bus distribution networks are considered under a defined load growth for planning duration with the distinct load demand models’ aggregation. The findings of the results after comparing with well-known optimization techniques DE and PSO confirm the feasibility of the method suggested.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022099
Author(s):  
Chengyi Yue ◽  
Binbin Bei

Abstract Reducing the dependence of microgrid upon the communication system and realizing the efficient control of multiple distributed generation of the microgrid are problems that need to be solved urgently. Through the research, based on multiple microgrid operation modes, the peer-to-peer control strategy in microgrid is investigated, and the peer-to-peer control strategy method of microgrid is given for a variety of complex control problems of distributed power According to the peer-to-peer control strategy method, distributed power supply adopts droop control in adjusting distributed power supply in output voltage and frequency; the droop controller has P-f and Q-U droop characteristics. This paper establishes a peer-to-peer control microgrid simulation model, adopts the droop controller designed in this paper to island mode and grid-connected mode, and investigates how the microgrid switches between the two modes. In accordance with Matlab/Simulink simulation outcomes, the research examines frequency, voltage and power changes in distributed generation in the microgrid, and verifies the validity and feasibility of microgrid peer-to-peer control strategy.


2021 ◽  
Vol 236 ◽  
pp. 01024
Author(s):  
Bo Wu

In order to study the influence of distributed power access on the security state of distribution network, a comprehensive evaluation method for the security state of distribution network including distributed power access was proposed.Based on the output model and load model of photovoltaic power supply, the security situation assessment index system of distributed power supply access distribution network is established. Then combined with fuzzy analytic hierarchy process and entropy weight method, the composite weight of each index is obtained, and the combined weight is optimized based on chi-square distance. Finally, the evaluation method based on ER algorithm (Evidential Reasoning) is proposed. Simulation results verify the effectiveness and accuracy of the proposed method.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liu Shengli ◽  
Wu Jun ◽  
Xue Longjiang ◽  
Wu Di ◽  
Lu Haiqing ◽  
...  

Aiming at the problems of low power supply reliability, poor transfer capacity between stations, and low line utilization in the current distribution network, this paper proposes a diamond-shaped distribution network structure with a clear structure. First, we investigated the typical wiring patterns of medium-voltage distribution networks in Tokyo, Japan, Paris, France, and China’s developed cities, and summarized experience and shortcomings. Secondly, combining the typical wiring patterns of distribution networks in China and abroad, construct a diamond-shaped distribution network structure, and study its adaptability, safety and flexibility, power supply reliability, and economy. Finally, take the transformation of the wiring mode of a regional distribution network in a certain city as an example, compare the use of the diamond-shaped distribution network structure in this article with the use of cable double-ring network wiring, cable “double petal” wiring, and Shanghai diamond-type wiring distribution network grid reconstruction The effect verifies the superiority of the diamond-shaped distribution network structure in this paper.


Author(s):  
Mahesh Kumar ◽  
Perumal Nallagownden ◽  
Irraivan Elamvazuthi ◽  
Pandian Vasant ◽  
Luqman Hakim Rahman

In the distribution system, distributed generation (DG) are getting more important because of the electricity demands, fossil fuel depletion and environment concerns. The placement and sizing of DGs have greatly impact on the voltage stability and losses in the distribution network. In this chapter, a particle swarm optimization (PSO) algorithm has been proposed for optimal placement and sizing of DG to improve voltage stability index in the radial distribution system. The two i.e. active power and combination of active and reactive power types of DGs are proposed to realize the effect of DG integration. A specific analysis has been applied on IEEE 33 bus system radial distribution networks using MATLAB 2015a software.


2019 ◽  
Vol 9 (21) ◽  
pp. 4685 ◽  
Author(s):  
Ahmad Asrul Ibrahim ◽  
Behzad Kazemtabrizi ◽  
Javier Renedo

A new active network management framework is presented based on a multi-period optimal power flow problem that is bounded by security constraints at the distribution level for upholding the security of supply. This can be achieved through active engagement with flexible demand and distributed generation to prepare for contingency events in day-ahead operational planning. This framework is coupled with a flexible hybrid AC/DC medium voltage (MV) distribution network topology. It contains an integrated multi-terminal medium voltage DC (MVDC) interface for a seamless interaction and integration of the flexible demand and generation on both AC and DC sides of the hybrid network. The active energy management framework when coupled with a flexible hybrid AC/DC topology provides unprecedented degrees of flexibility as well as security of operation under a variety of conditions. To this end, the 75-bus UK generic distribution network has been modified and converted into a hybrid AC/DC network using the integrated MVDC interface. This framework is then deployed to minimise operational costs to the network operator, considering costs of schemes such as distributed generation curtailment and flexible demand shifting, as well as network losses. Results show a significant improvement in operational costs when the network operates as a flexible hybrid when compared to a pure AC or a more conventional AC/DC hybrid.


2019 ◽  
Vol 39 (2) ◽  
Author(s):  
Juan Martín Guardiola Montenegro ◽  
Eduardo Gómez Luna ◽  
Eduardo Marlés Sáenz ◽  
Jorge Armando De la Cruz Saavedra

Electrical networks are evolving and taking on more challenges as the inclusion of renewable energy and distributed generation units increase, specially at distribution levels. Big trends of generating electricity with alternative and renewable resources has promoted the formation of distribution networks subsystems or micro grids, capable of supplying their own electric demand and to export energy to the interconnected system, if necessary. However, the effects of these generation units into the network and into the microgrid as well are many, as harmonic distortion, voltage flickers and especially in electrical protections.This paper provides an overview about implementation of renewable energy and distributed generation worldwide, as well as an introduction to microgrids concept and its main impacts and challenges into the electric systems. Finally, the main impacts of microgrid on protection equipments are presented at a distribution level, being adaptive protections one of the solutions to the dynamic changes of the electric system.


Sign in / Sign up

Export Citation Format

Share Document