scholarly journals Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2274 ◽  
Author(s):  
Jianzhong Xu ◽  
Fu Yan ◽  
Kumchol Yun ◽  
Lifei Su ◽  
Fengshu Li ◽  
...  

The economic load dispatch (ELD) problem is a complex optimization problem in power systems. The main task for this optimization problem is to minimize the total fuel cost of generators while also meeting the conditional constraints of valve-point loading effects, prohibited operating zones, and nonsmooth cost functions. In this paper, a novel grey wolf optimization (GWO), abbreviated as NGWO, is proposed to solve the ELD problem by introducing an independent local search strategy and a noninferior solution neighborhood independent local search technique to the original GWO algorithm to achieve the best problem solution. A local search strategy is added to the standard GWO algorithm in the NGWO, which is called GWOI, to search the local neighborhood of the global optimal point in depth and to guarantee a better candidate. In addition, a noninferior solution neighborhood independent local search method is introduced into the GWOI algorithm to find a better solution in the noninferior solution neighborhood and ensure the high probability of jumping out of the local optimum. The feasibility of the proposed NGWO method is verified on five different power systems, and it is compared with other selected methods in terms of the solution quality, convergence rate, and robustness. The compared experimental results indicate that the proposed NGWO method can efficiently solve ELD problems with higher-quality solutions.

2021 ◽  
Vol 11 (11) ◽  
pp. 4837
Author(s):  
Mohamed Abdel-Basset ◽  
Reda Mohamed ◽  
Mohamed Abouhawwash ◽  
Victor Chang ◽  
S. S. Askar

This paper studies the generalized normal distribution algorithm (GNDO) performance for tackling the permutation flow shop scheduling problem (PFSSP). Because PFSSP is a discrete problem and GNDO generates continuous values, the largest ranked value rule is used to convert those continuous values into discrete ones to make GNDO applicable for solving this discrete problem. Additionally, the discrete GNDO is effectively integrated with a local search strategy to improve the quality of the best-so-far solution in an abbreviated version of HGNDO. More than that, a new improvement using the swap mutation operator applied on the best-so-far solution to avoid being stuck into local optima by accelerating the convergence speed is effectively applied to HGNDO to propose a new version, namely a hybrid-improved GNDO (HIGNDO). Last but not least, the local search strategy is improved using the scramble mutation operator to utilize each trial as ideally as possible for reaching better outcomes. This improved local search strategy is integrated with IGNDO to produce a new strong algorithm abbreviated as IHGNDO. Those proposed algorithms are extensively compared with a number of well-established optimization algorithms using various statistical analyses to estimate the optimal makespan for 41 well-known instances in a reasonable time. The findings show the benefits and speedup of both IHGNDO and HIGNDO over all the compared algorithms, in addition to HGNDO.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2189 ◽  
Author(s):  
Shuai Liu ◽  
Zhong-Kai Feng ◽  
Wen-Jing Niu ◽  
Hai-Rong Zhang ◽  
Zhen-Guo Song

In recent years, growing peak pressure is posing a huge challenge for the operators of electrical power systems. As the most important clean renewable energy, hydropower is often advised as a response to the peak loads in China. Thus, a novel hybrid sine cosine algorithm (HSCA) is proposed to deal with the complex peak operation problem of cascade hydropower reservoirs. In HSCA, the elite-guide evolution strategy is embedded into the standard sine cosine algorithm to improve the convergence rate of the swarm. The Gaussian local search strategy is used to increase the diversity of the population. The random mutation operator is adopted to enhance the search capability of the individuals in the evolutionary process. The proposed method is applied to solve the complex peak operation problem of two hydropower systems. The simulations indicate that in different cases, HSCA can generate the scheduling results with higher quality than several benchmark methods. Hence, this paper provides a feasible method for the complex peak operation problem of cascade hydropower reservoirs.


2019 ◽  
Vol 11 (10) ◽  
pp. 214
Author(s):  
Li ◽  
Sun ◽  
Jiang

The codebook-based beamforming for millimeter-wave (mm Wave) communication systems is usually used to compensate the severe attenuation of the mm Wave region. The beam training process based on pre-specified beam codebooks is considered a global optimization problem in 2-D planes formed by the potential beam index. The Rosenbrock algorithm (RA) is adopted to implement optimum beam searching whereas the simulated annealing (SA) algorithm is used to solve the problem of falling into the local optimum, due to the unavailable gradient information of the objective function. However, the RA implements rounding to the integer which leads to the problem of repeated search and beam space discontinuity caused by beam index will impair the powerful local search ability. Thus, in this paper, an enhanced RA based on tabu search and combined with SA algorithm is proposed as an alternative solution for beam search success rate. The proposed algorithm reduces the search times by forbidding the repeat search with tabu table and design of neighbor region. Moreover, to prevent the search failure, the search candidate index is defined to keep the local search ability of the original algorithm and wrap around of beam index is applied to maintain continuity of the search direction. Experimental simulations show that the proposed technique can improve the search efficiency in terms of reduced steps and increase search success rate during the beam training procedure compared to existing techniques.


2014 ◽  
Vol 8 (2) ◽  
pp. 203-216 ◽  
Author(s):  
Wenzhong Guo ◽  
Genggeng Liu ◽  
Guolong Chen ◽  
Shaojun Peng

Sign in / Sign up

Export Citation Format

Share Document