generalized normal distribution
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 18)

H-INDEX

8
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7774
Author(s):  
Naveed Ahmad Khan ◽  
Muhammad Sulaiman ◽  
Carlos Andrés Tavera Romero ◽  
Fawaz Khaled Alarfaj

This paper analyzes the mathematical model of electrohydrodynamic (EHD) fluid flow in a circular cylindrical conduit with an ion drag configuration. The phenomenon was modelled as a nonlinear differential equation. Furthermore, an application of artificial neural networks (ANNs) with a generalized normal distribution optimization algorithm (GNDO) and sequential quadratic programming (SQP) were utilized to suggest approximate solutions for the velocity, displacements, and acceleration profiles of the fluid by varying the Hartmann electric number (Ha2) and the strength of nonlinearity (α). ANNs were used to model the fitness function for the governing equation in terms of mean square error (MSE), which was further optimized initially by GNDO to exploit the global search. Then SQP was implemented to complement its local convergence. Numerical solutions obtained by the design scheme were compared with RK-4, the least square method (LSM), and the orthonormal Bernstein collocation method (OBCM). Stability, convergence, and robustness of the proposed algorithm were endorsed by the statistics and analysis on results of absolute errors, mean absolute deviation (MAD), Theil’s inequality coefficient (TIC), and error in Nash Sutcliffe efficiency (ENSE).


2021 ◽  
Vol 11 (20) ◽  
pp. 9388
Author(s):  
Hoirim Lee ◽  
Wonseok Yang ◽  
Woochul Nam

The acquisition of a large-volume brainwave database is challenging because of the stressful experiments that are required; however, data synthesis techniques can be used to address this limitation. Covariance matrix decomposition (CMD), a widely used data synthesis approach, generates artificial data using the correlation between features and random noise. However, previous CMD methods constrain the stochastic characteristics of artificial datasets because the random noise used follows a standard distribution. Therefore, this study has improved the performance of CMD by releasing such constraints. Specifically, a generalized normal distribution (GND) was used as it can alter the kurtosis and skewness of the random noise, affecting the distribution of the artificial data. For the validation of GND performance, a motor imagery brainwave classification was conducted on the artificial dataset generated by GND. The GND-based data synthesis increased the classification accuracy obtained with the original data by approximately 8%.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4355
Author(s):  
Mukul Chankaya ◽  
Ikhlaq Hussain ◽  
Aijaz Ahmad ◽  
Hasmat Malik ◽  
Fausto Pedro García Márquez

The presented work employs the multiple random feature kernel mean p-power algorithm (MRFKMP) for the voltage source converter (VSC) control of a three-phase four-wire grid-tied dual-stage photovoltaic-hybrid energy storage system (HESS) to achieve multiple objectives during various induced dynamic conditions. The proposed control enables the VSC to accomplish manifold goals, i.e., reactive power compensation, power quality enhancement, load, power balancing at common coupling point and grid voltage balancing during unity power factor mode of operation. The proposed system is scrutinized under steady-state and numerous dynamic states such as irradiation variation, specified power mode, abnormal grid voltage, load, and grid voltage unbalancing. The seamless control facilitates the swift resynchronization of the grid as well as maintaining stability during islanding and re-synchronization operations while satisfying the necessary load requirements. The associated HESS consisting of battery and ultra-capacitor is competent enough in managing the interruptions occurring on the grid, load and photovoltaic side. The DC bus voltage is controlled by the PI controller, which is tuned by the generalized normal distribution algorithm and kept at the desired level during diverse operating conditions. The optimized DC bus generates an accurate loss component of current and further enhances the VSC performance. The proposed system is investigated by simulation and found acceptable as per IEEE 519 standards.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Khalid A. Eldrandaly ◽  
Laila Abdel-Fatah ◽  
Mohamed Abdel-Basset ◽  
Mohamed El-hoseny ◽  
Nabil M. Abdel-Aziz

The sixth-generation (6G) is envisioned as a pivotal technology that will support the ubiquitous seamless connectivity of substantial networks. The main advantage of 6G technology is leveraging Artificial Intelligence (AI) techniques for handling its interoperable functions. The pairing of 6G networks and AI creates new needs for infrastructure, data preparation, and governance. Thus, Intent-Based Network (IBN) architecture is a key infrastructure for 6G technology. Usually, these networks are formed of several clusters for data gathering from various heterogeneities in devices. Therefore, an important problem is to find the minimum transmission power for each node in the network clusters. This paper presents hybridization between two Computational Intelligence (CI) algorithms called the Marine Predator Algorithm and the Generalized Normal Distribution Optimization (MPGND). The proposed algorithm is applied to save power consumption which is an important problem in sustainable green 6G-IBN. MPGND is compared with several recently proposed algorithms, including Augmented Grey Wolf Optimizer (AGWO), Sine Tree-Seed Algorithm (STSA), Archimedes Optimization Algorithm (AOA), and Student Psychology-Based Optimization (SPBO). The experimental results with the statistical analysis demonstrate the merits and highly competitive performance of the proposed algorithm.


2021 ◽  
Vol 11 (11) ◽  
pp. 4837
Author(s):  
Mohamed Abdel-Basset ◽  
Reda Mohamed ◽  
Mohamed Abouhawwash ◽  
Victor Chang ◽  
S. S. Askar

This paper studies the generalized normal distribution algorithm (GNDO) performance for tackling the permutation flow shop scheduling problem (PFSSP). Because PFSSP is a discrete problem and GNDO generates continuous values, the largest ranked value rule is used to convert those continuous values into discrete ones to make GNDO applicable for solving this discrete problem. Additionally, the discrete GNDO is effectively integrated with a local search strategy to improve the quality of the best-so-far solution in an abbreviated version of HGNDO. More than that, a new improvement using the swap mutation operator applied on the best-so-far solution to avoid being stuck into local optima by accelerating the convergence speed is effectively applied to HGNDO to propose a new version, namely a hybrid-improved GNDO (HIGNDO). Last but not least, the local search strategy is improved using the scramble mutation operator to utilize each trial as ideally as possible for reaching better outcomes. This improved local search strategy is integrated with IGNDO to produce a new strong algorithm abbreviated as IHGNDO. Those proposed algorithms are extensively compared with a number of well-established optimization algorithms using various statistical analyses to estimate the optimal makespan for 41 well-known instances in a reasonable time. The findings show the benefits and speedup of both IHGNDO and HIGNDO over all the compared algorithms, in addition to HGNDO.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 995
Author(s):  
Mohamed Abdel-Basset ◽  
Reda Mohamed ◽  
Attia El-Fergany ◽  
Mohamed Abouhawwash ◽  
S. S. Askar

To simulate the behaviors of photovoltaic (PV) systems properly, the best values of the uncertain parameters of the PV models must be identified. Therefore, this paper proposes a novel optimization framework for estimating the parameters of the triple-diode model (TDM) of PV units with different technologies. The proposed methodology is based on the generalized normal distribution optimization (GNDO) with two novel strategies: (i) a premature convergence method (PCM), and (ii) a ranking-based updating method (RUM) to accelerate the convergence by utilizing each individual in the population as much as possible. This improved version of GNDO is called ranking-based generalized normal distribution optimization (RGNDO). RGNDO is experimentally investigated on three commercial PV modules (Kyocera KC200GT, Ultra 85-P and STP 6-120/36) and a solar unit (RTC Si solar cell France), and its extracted parameters are validated based on the measured dataset points extracted at generalized operating conditions. It can be reported here that the best scores of the objective function are equal to 0.750839 mA, 28.212810 mA, 2.417084 mA, and 13.798273 mA for RTC cell, KC200GT, Ultra 85-P, and STP 6-120/36; respectively. Additionally, the principal performance of this methodology is evaluated under various statistical tests and for convergence speed, and is compared with a number of the well-known recent state-of-the-art algorithms. RGNDO is shown to outperform the other algorithms in terms of all the statistical metrics as well as convergence speed. Finally, the performance of the RGNDO is validated in various operating conditions under varied temperatures and sun irradiance levels.


2021 ◽  
Vol 27 (127) ◽  
pp. 188-212
Author(s):  
Manal Mahmoud Rashid ◽  
Entsar Arebe Aldoori

Transforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the practical side showed that the hazard function is increasing, i.e. the increment in staying the teachers in the service, they will be exposed to a greater failure rate as a result of the staying period which decreases in its turn.


Sign in / Sign up

Export Citation Format

Share Document