scholarly journals Effect of Pin Diameter Degressive Gradient on Heat Transfer in a Microreactor with Non-Uniform Pin-Fin Array under Low Reynolds Number Conditions

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2702
Author(s):  
Miao Qian ◽  
Jie Li ◽  
Zhong Xiang ◽  
Chao Yan ◽  
Xudong Hu

To improve the efficiency of hydrogen-producing microreactors with non-uniform pin-fin array, the influence of the pin diameter degressive gradient of the non-uniform pin-fin array (NPFA) on heat transfer and pressure drop characteristics is analyzed in this study via numerical simulation under low Reynolds number conditions. Because correlations in prior studies cannot be used to predict the Nusselt number and pressure drop in the NPFA, new heat transfer and friction factor correlations are developed in this paper to account for the effect of the pin diameter degressive gradient, providing a method for the optimized design of the pin diameter degressive gradient for a microreactor with NPFA. The results show that the Nusselt number and friction factor under a low Reynolds number are quite sensitive to the pin diameter degressive gradient. Based on the new correlations, the exponents of the pin diameter degressive gradient for the friction factor and Nusselt number were 6.9 and 2.1, respectively, indicating the significant influence of the pin diameter degressive gradient on the thermal and hydrodynamic characteristics in the NPFA structure.

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Ankit Tiwari ◽  
Savas Yavuzkurt

The goal of this study is to evaluate the computational fluid dynamic (CFD) predictions of friction factor and Nusselt number from six different low Reynolds number k–ε (LRKE) models namely Chang–Hsieh–Chen (CHC), Launder–Sharma (LS), Abid, Lam–Bremhorst (LB), Yang–Shih (YS), and Abe–Kondoh–Nagano (AKN) for various heat transfer enhancement applications. Standard and realizable k–ε (RKE) models with enhanced wall treatment (EWT) were also studied. CFD predictions of Nusselt number, Stanton number, and friction factor were compared with experimental data from literature. Various parameters such as effect of type of mesh element and grid resolution were also studied. It is recommended that a model, which predicts reasonably accurate values for both friction factor and Nusselt number, should be chosen over disparate models, which may predict either of these quantities more accurately. This is based on the performance evaluation criterion developed by Webb and Kim (2006, Principles of Enhanced Heat Transfer, 2nd ed., Taylor and Francis Group, pp. 1–72) for heat transfer enhancement. It was found that all LRKE models failed to predict friction factor and Nusselt number accurately (within 30%) for transverse rectangular ribs, whereas standard and RKE with EWT predicted friction factor and Nusselt number within 25%. Conversely, for transverse grooves, AKN, AKN/CHC, and LS (with modified constants) models accurately predicted (within 30%) both friction factor and Nusselt number for rectangular, circular, and trapezoidal grooves, respectively. In these cases, standard and RKE predictions were inaccurate and inconsistent. For longitudinal fins, Standard/RKE model, AKN, LS and Abid LRKE models gave the friction factor and Nusselt number predictions within 25%, with the AKN model being the most accurate.


1992 ◽  
Vol 114 (2) ◽  
pp. 373-382 ◽  
Author(s):  
D. A. Olson

We have measured heat transfer and pressure drop of three thin, compact heat exchangers in helium gas at 3.5 MPa and higher, with Reynolds numbers of 450 to 36,000. The flow geometries for the three heat exchanger specimens were: circular tube, rectangular channel, and staggered pin fin with tapered pins. The specimens were heated radiatively at heat fluxes up to 77 W/cm2. Correlations were developed for the isothermal friction factor as a function of Reynolds number, and for the Nusselt number as a function of Reynolds number and the ratio of wall temperature to fluid temperature. The specimen with the pin fin internal geometry had significantly better heat transfer than the other specimens, but it also had higher pressure drop. For certain conditions of helium flow and heating, the temperature more than doubled from the inlet to the outlet of the specimens, producing large changes in gas velocity, density, viscosity, and thermal conductivity. These changes in properties did not affect the correlations for friction factor and Nusselt number in turbulent flow.


Author(s):  
Stephen A. Andrews ◽  
William D. E. Allan

An experiment was conducted on the effects of streamwise stagger on heat transfer and pressure drop in a pin-fin array. The data were analyzed so as to highlight how stagger could be used to design a pin fin array for the lowest possible pressure loss. Design of arrays for low pressure loss is important in electronics cooling applications. They require large amounts of heat to be extracted from fixed areas, using a minimum of power to do so. This analysis found that the minimum friction factor occurred at a streamwise stagger of approximately 12% of the range between fully inline and fully staggered. By fixing the pin diameter, varying the stagger resulted in a 63% reduction in friction factor with only a 18% reduction in the Nusselt number, based on the array footprint. Additionally, it was found that for a fixed Nusselt number, the pin diameter could vary within a finite range, with decreasing diameters permitting arrays with more efficient degrees of stagger which continued to carry the required heating/cooling load.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Andrew Sexton ◽  
Jeff Punch ◽  
Jason Stafford ◽  
Nicholas Jeffers

Liquid microjets are emerging as candidate primary or secondary heat exchangers for the thermal management of next generation photonic integrated circuits (PICs). However, the thermal and hydrodynamic behavior of confined, low Reynolds number liquid slot jets is not yet comprehensively understood. This investigation experimentally examined jet outlet modifications—in the form of tabs and chevrons—as techniques for passive control and enhancement of single-phase convective heat transfer. The investigation was carried out for slot jets in the laminar flow regime, with a Reynolds number range, based on the slot jet hydraulic diameter, of 100–500. A slot jet with an aspect ratio of 4 and a fixed confinement height to hydraulic diameter ratio (H/Dh) of 1 was considered. The local surface heat transfer and velocity field characteristics were measured using infrared (IR) thermography and particle image velocimetry (PIV) techniques. It was found that increases in area-averaged Nusselt number of up to 29% compared to the baseline case could be achieved without incurring additional hydrodynamic losses. It was also determined that the location and magnitude of Nusselt number and velocity peaks within the slot jet stagnation region could be passively controlled and enhanced through the application of outlet tabs of varying geometries and locations.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Ali Mohammadi ◽  
Ali Koşar

This study presents results on the hydrodynamic and thermal characteristics of single-phase water flows inside microchannels (MCs) with different micropin fin (MPF) configurations. Different inline arrangements of micropin fins were considered over Reynolds numbers ranging from 20 to 160. The computational studies were performed using the commercial software ansys 14.5. The hydrodynamic performances of the configurations were compared using two parameters, namely, pressure drop and friction factor while the comparison in their thermal and thermal-hydraulic performances were based on Nusselt number and thermal performance index (TPI). Wake-pin fin interactions were carefully analyzed through streamline patterns in different arrangements and under different flow conditions. The results showed strong dependencies of all four evaluated performance parameters on the vertical pitch ratio (ST/D). Weaker dependencies on height over diameter ratio (H/D), horizontal pitch ratio (SL/D), and minimum available area (Amin) were observed. With an increase in the Reynolds number, extension of the wake regions behind MPFs was observed to be the paramount factor in increasing pressure drop and Nusselt number. Regarding TPI, two adverse trends were observed corresponding to different ST/D ratios, while the effect of SL/D ratio was unique. For friction factors, H/D and SL/D ratios of 1 and 1.5, respectively, led to minimum values, while different ST/D ratios are needed for each diameter size for the maximum performance. Moreover, a twofold increase in Reynolds number resulted in about 40% decrease in friction factor in each configuration.


2007 ◽  
Vol 129 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Abel Siu-Ho ◽  
Weilin Qu ◽  
Frank Pfefferkorn

The pressure drop and heat transfer characteristics of a single-phase micropin-fin heat sink were investigated experimentally. Fabricated from 110 copper, the heat sink contained an array of 1950 staggered square micropin fins with 200×200μm2 cross section by 670μm height. The ratios of longitudinal pitch and transverse pitch to pin-fin equivalent diameter are equal to 2. De-ionized water was employed as the cooling liquid. A coolant inlet temperature of 25°C, and two heat flux levels, qeff″=50W∕cm2 and qeff″=100W∕cm2, defined relative to the platform area of the heat sink, were tested. The inlet Reynolds number ranged from 93 to 634 for qeff″=50W∕cm2, and from 127 to 634 for qeff″=100W∕cm2. The measured pressure drop and temperature distribution were used to evaluate average friction factor and local averaged heat transfer coefficient/Nusselt number. Predictions of the previous friction factor and heat transfer correlations that were developed for low Reynolds number (Re<1000) single-phase flow in short pin-fin arrays were compared to the present micropin-fin data. Moores and Joshi’s friction factor correlation (2003, “Effect of Tip Clearance on the Thermal and Hydrodynamic Performance of a Shrouded Pin Fin Array,” ASME J. Heat Transfer, 125, pp. 999–1006) was the only one that provided acceptable predictions. Predictions from the other friction factor and heat transfer correlations were significantly different from the experimental data collected in this study. These findings point to the need for further fundamental study of single-phase thermal/fluid transport process in micropin-fin arrays for electronic cooling applications.


Author(s):  
Abel M. Siu Ho ◽  
Weilin Qu ◽  
Frank Pfefferkorn

The pressure drop and heat transfer characteristics of a single-phase micro-pin-fin heat sink were investigated experimentally. Fabricated from 110 copper, the heat sink consisted of 1950 staggered micro-pins with 200×200 μm2 cross-section by 670 μm height. Deionized water was employed as the cooling liquid. A coolant inlet temperature of 25°C, and two heat flux levels, q" eff = 50 W/cm2 and q" eff = 100 W/cm2, defined relative to the planform area of the heat sink, were tested. The inlet Reynolds number ranged from 93 to 634 for q" eff = 50 W/cm2, and 127 to 634 for q" eff = 100 W/cm2. The measured pressure drop and temperature distribution were used to evaluate average friction factor and local averaged heat transfer coefficient/Nusselt number. Predictions of the Moores and Joshi friction factor correlation and the Chyu et al. heat transfer correlation that were developed using macro-size pin-fin arrays were compared to micro-pin-fin heat sink data. While the Moores and Joshi correlation provide acceptable predictions, the Chyu et al. correlation overpredicted local Nusselt number data by a fairly large margin. These findings point to the need for further study of single-phase thermal/fluid transport process in micro-pin-fin heat sinks.


Author(s):  
Weilin Qu

This study concerns thermal and hydrodynamic characteristics of water single-phase flow and flow boiling in a micro-pin-fin array. An array of 1950 staggered square micro-pin-fins with a 200×200 μm2 cross-section by a 670 μm height were fabricated into a copper heat sink test section. Two inlet temperatures of 30 °C and 60 °C, and six maximum mass velocities for each inlet temperature, ranging from 183 to 420 kg/m2s, were tested. The corresponding inlet Reynolds number ranged from 45.9 to 179.6. General characteristics of single-phase flow and flow boiling were described. Predictive tools were proposed for single-phase heat transfer coefficient and pressure drop. Unique features of flow boiling heat transfer in the micro-pin-fin array were identified. The classic Lockhart-Martinelli correlation incorporating a single-phase micro-pin-fin friction factor correlation and the laminar liquid–laminar vapor combination assumption was used to predict two-phase pressure drop in the micro-pin-fin array. The predictions agreed well with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document