scholarly journals A Method of Estimating Mutual Inductance and Load Resistance Using Harmonic Components in Wireless Power Transfer System

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2728 ◽  
Author(s):  
Dongsheng Yang ◽  
Sokhui Won ◽  
Jiangwei Tian ◽  
Zixin Cheng ◽  
Jongho Kim

In general, for the WPT (Wireless Power Transfer) system, as the mutual inductance and load resistance are calculated according to the measured data of both the transmitter and receiver, the wireless communication modules are needed to share data. A method for estimating mutual inductance and load resistance without wireless communication is proposed, based on the fundamental and third harmonic components. The circuit is decomposed with respect to the frequencies, by which the mathematic model is established. The fundamental and harmonic components of the output voltage and current of a high-frequency inverter are found by FFT (Fast Fourier Transform). The experimental WPT system with a SiC power MOSFET is designed, and the effectiveness of the proposed method is verified by the simulation and experiment results. Additional hardware and frequency scanning operation are not needed because of the use of the harmonic components.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4907
Author(s):  
Mauro Parise ◽  
Fabrizio Loreto ◽  
Daniele Romano ◽  
Giulio Antonini ◽  
Jonas Ekman

The computation of self and mutual inductances of coils is a classic problem of electrical engineering. The accurate modeling of coupled coils has received renewed interest with the spread of wireless power transfer systems. This problem has been quite well addressed for coplanar or perfectly coaxial coils but it is known that the misalignment conditions easily lead to a sharp decrease in the efficiency. Hence, it is crucial to take misalignment into account in order to properly design the overall wireless power transfer system. This work presents a study to compute analytically the mutual inductance of non-coaxial pancake coils with parallel axes. The accuracy of the proposed methodology is tested by comparison with the numerical results obtained using the tool Fast-Henry. Then, a wireless power transfer system, comprising a full bridge inverter is considered, showing the impact of the misalignment on the coupling between two pancake coils and, thus, between the source and the load.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 448
Author(s):  
Sangyong Lee ◽  
Jeonho Lee ◽  
Jongkyum Kwon ◽  
Se-Kyo Chung

The improvement of power transmission efficiency (PTE) is an important issue in the design of a wireless power transfer (WPT) system. The WPT system with multiple transmitting (Tx) or receiving (Rx) coils is a way to improve the PTE. This paper deals with the estimation of the mutual inductance angle for a two-dimensional (2D) WPT system with two Tx coils and one Rx coil. The mutual inductance angle is one of the most important parameters to determine the PTE in the 2D WPT system. The condition for the maximum PTE is investigated and the mutual inductance angle is defined for the 2D WPT system. An improved estimation method of the mutual inductance angle is proposed based on the phase-locked loop (PLL) technique using the voltages and currents of the Tx coils. The simulation and experimental results are provided to validate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document