scholarly journals A Resonant Coupling Power Transfer System Using Two Driving Coils

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2914
Author(s):  
Changping Li ◽  
Bo Wang ◽  
Ruining Huang ◽  
Ying Yi

This paper presents a resonance-based wireless power transfer (R-WPT) system using two multi-layer multi-turn inductor coils on the transmission side and a third coil on the receiver side. We theoretically characterized and optimized the system in terms of quality factor (Q factor) of the coils and power transfer efficiency (PTE). In our R-WPT prototype, the alternating currents (AC) were simultaneously applied to two transmitter coils, which, in turn, transferred power wirelessly to the secondary coil with a 3-mm radius on the receiving end. Owing to the optimization of the inductive coils, all of the coils achieved the highest Q-factor and PTE at the resonance frequency of 2.9 MHz, and the transfer distance could be extended up to 30 mm. The results show that the PTE was greater than 74% at a separation distance of 5 mm and about 38.7% at 20 mm. This is distinctly higher than that of its 2 and 3-coil counterparts using only one driving coil.

2016 ◽  
Vol 3 (1) ◽  
pp. 9-14
Author(s):  
Nurcan Keskin ◽  
Huaping Liu

Power transfer efficiency in loosely coupled inductive systems can be enhanced by resonance. Primary and secondary can be tuned to same resonant frequency. In this paper, MOSFET-based Varactors and switchable capacitors are used for re-tuning of such a system at 13.56 MHz. This is achieved either using each cap structure alone or as a hybrid model. These techniques are designed for 13.56 MHz wireless power transfer system.


2019 ◽  
Vol 10 (3) ◽  
pp. 49
Author(s):  
Toshiyuki Fujita ◽  
Hiroyuki Kishi ◽  
Hiroshi Uno ◽  
Yasuyoshi Kaneko

A short mileage and long charging times are problems facing electric vehicles (EVs), and dynamic wireless power transfer (WPT) systems are one of the most effective solutions to overcome these shortcomings. This paper proposes a dynamic WPT system consisting of several stationary primary underground coils and a secondary coil on an EV. The dynamic WPT system employed solenoid coils that were superior to circular coils in terms of misalignment to the traveling direction. A dynamic WPT system rated at 25 kW was designed, constructed, and tested to verify the principles of operation; that is, the capability of supplying electric power continuously.


2020 ◽  
Vol 20 (4) ◽  
pp. 270-276
Author(s):  
Nam Ha-Van ◽  
Hoang Le-Huu ◽  
Minh Thuy Le ◽  
Kwangsuk Park ◽  
Chulhun Seo

The free-positioning wireless power transfer (WPT) system has drawn attention in recent years. Traditionally, a WPT system can transfer energy in one or two directions on the same plane, but it leads the restrictions of angle and axis misalignment between a transmitter and a receiver coil. In this paper, we propose a free-positioning WPT system using a three-dimensional cubic-shaped transmitting coil for portable device charging. A small receiving coil is placed inside the transmitter to achieve the transferred energy through the magnetic resonant coupling. In addition, the equivalent circuit and the mutual inductance between the Tx and Rx coils are analyzed. Finally, a practical experiment is implemented to verify the transfer performance, which can reach up to about 50% power transfer efficiency. The proposed system can charge in spatial freedom.


A typical magnetic resonance based wireless power transfer (WPT) system comprises a transmitter coil and an embedded receiver coil used for wireless charging of the electrical and electronics devices. It has been investigated that the coil structure influence the power transfer efficiency of the wireless charging system .The investigations have been carried out in order to determine a suitable coil type and geometry so as to achieve higher efficiency of a wireless power transfer system. The present investigation will afford the design strategy for an efficient wireless charging system .


2021 ◽  
Author(s):  
Dongyong Shan ◽  
Haiyue Wang ◽  
Ke Cao ◽  
Junhua Zhang

Abstract The wireless power transfer (WPT) system has been widely used in various fields such as household appliances, electric vehicle charging and sensor applications. A frequency reconfigurable magnetic resonant coupling wireless power transfer (MRCWPT) system with dynamically enhanced efficiency by using the frequency reconfigurable metamaterial is proposed in this paper. The reconfigurability is achieved by adjusting the capacitance value of the variable capacitor connected in the coil of the system. Finite element simulation results have shown that the frequency reconfigurable electromagnetic metamaterial can manipulate the direction of the electromagnetic field of the system due to its abnormal effective permeability. The ultra-thin frequency reconfigurable metamaterial is designed at the different working frequency of 14.1 MHz, 15 MHz, 16.2 MHz, 17.5 MHz, 19.3 MHz, 21.7 MHz and 25 MHz to enhance the magnetic field and power transfer efficiency (PTE) of the system. Frequency reconfigurable mechanism of the system with the frequency reconfigurable metamaterial is derived by the equivalent circuit theory. Finally, further measurement which verifies the simulation by reasonable agreement is carried out. PTE of the system by adding the metamaterial are 59%, 73%, 67%, 66%, 65%, 60% and 58% at different working frequencies. PTE of the system without and with the metamaterial is 72% and 49% at the distance of 120 mm and the frequency of 15 MHz, respectively.


2019 ◽  
Vol 16 (11) ◽  
pp. 20190156-20190156 ◽  
Author(s):  
Hiroya Andoh ◽  
Keita Tsuzuki ◽  
Dai Oikawa ◽  
Toko Sugiura ◽  
Takehiko Tsukamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document