scholarly journals Optimal Thermal Insulation Thicknesses of External Walls Based on Economic and Ecological Heating Cost

Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3415 ◽  
Author(s):  
Dylewski

The present study introduces the concept of ecological cost of heating modeled on the economic cost of heating. A method of determining these costs is also proposed. This method allows for an analytical description of the ecological as well as economic net present value of a thermal insulation investment. Consequently, it is possible to determine the optimal values for ecological reasons of the heat transfer coefficient of the building external wall and the thickness of thermal insulation. The present study uses life-cycle assessment (LCA) analysis to determine the environmental impact of thermal insulation materials used to insulate the external vertical wall and to determine the environmental impact of thermal energy production in the energy phase of the building’s life cycle. Various variants characteristic of Polish conditions were studied. Different types of construction materials of the wall, types of heat sources, thermal insulation materials and climate zones occurring in Poland were considered. For all analysed variants, the obtained thermal insulation thickness, optimum for ecological reasons, was much larger than the optimum for economic reasons. Even at the thickness of thermal insulation optimum for economic reasons, the investment was profitable for ecological reasons, i.e., a reduction in environmental load was obtained as a result of the thermal insulation investment. On the basis of the conducted study, it can be concluded that it is preferable to use thermal insulation thicknesses larger than required by current regulations and larger than optimum for economic reasons. The ecological benefits of thermal insulation investments are then significantly greater, with not much smaller economic benefits.

2018 ◽  
Vol 7 (4.37) ◽  
pp. 163
Author(s):  
Murad Saeed Sedeeq ◽  
Shadan Kareem Ameen ◽  
Ali Bolatturk

Environmental pollution is one of the biggest problems facing the world, even it is the most dangerous. Therefore, it becomes necessary to combine all efforts to reduce or eliminate it. Iraq is at the forefront of countries that suffer from major environmental problems. The present study aims to perform a comparative environmental assessment for three commonly available thermal insulation materials in Iraq namely expanded polystyrene (EPS), extruded polystyrene (XPS), and rock wool (RW) to select least environmental impact material. A cradle to gate life cycle assessment is performed to assess the environmental impact of each insulation material taking into account manufacturing, transportation, and installation and disposal stages. A life cycle assessment program SimaPro is used to model thermal insulation materials during its life cycle. A life cycle impact analysis method CML 2001 has been selected to assess the environmental aspects associated with two global damage categories as ozone layer depletion and global warming and two regional damage categories as acidification and eutrophication. Economically optimized amount of each insulation material is selected to represent the functional unit of life cycle assessment. The results illustrate that the EPS has the lower contribution in all environmental impact categories for all climatic regions. So, the EPS can be select as a proper thermal insulation material for the building sector from an economic and environmental perspective. The results of LCA are used to determine the amount of CO2 can be reduced per meter square of the exterior wall by using the economical amount of EPS during the lifetime of insulation material. The environmental impact results show that using EPS will contribute in CO2 emission reduction at about 81.5 % in all climatic regions in Iraq. 


2014 ◽  
Vol 787 ◽  
pp. 176-183 ◽  
Author(s):  
Li Ping Ma ◽  
Quan Jiang ◽  
Ping Zhao ◽  
Chun Zhi Zhao

Studies on life cycle assessment of three typical building thermal insulation materials including polystyrene board, rock wool board, and rigid foam polyurethane board related to building energy-saving were carried out. Based on the method of life cycle assessment, "1 kg of thermal insulation material" is first selected as one of the functional units in this study based on the production field data statistics and general market transaction rules of the thermal insulation materials, and life cycle resource consumption, energy consumption and exhaust emission of the three products in China are deeply surveyed and analyzed. The abiotic depletion potential (ADP), primary energy demand (PED), and global warming potential (GWP) for production of 1 kg of the three thermal insulation materials are calculated and analyzed. Furthermore, the functional unit is extended to be "1 m2 of thermal insulation material meeting the same energy-saving requirements" so as to compare the difference of environmental friendliness among the three building thermal insulation materials, and the corresponding life cycle environmental impact is also calculated and analyzed. As shown by the results, where calculated in unit mass, the order of production life cycle environmental impact significances of the thermal insulation materials is as follows: rock wool board < polyurethane board < polystyrene board. However, where calculated in unit area (m2) meeting the 65% energy-saving requirements, the production life cycle environmental impact significances of the three kinds of insulation materials are sorted as polystyrene board < polyurethane board < rock wool board, whatever the region is, which is opposite with that of the results for the insulation materials in unit mass (kg). The reason for such difference is that they have different volume weights and heat conductivity coefficients. The polystyrene board has a smaller volume weight and the smallest heat conductivity coefficient, whereas the rock wool board has the highest volume weight and heat conductivity coefficient. Source of the project fund. Subject "the Research and Application of Life Cycle Assessment Technology to the Building Materials for Building Engineering in Typical Regions" of the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (No.: 2011BAJ04B06)


2018 ◽  
Vol 10 (9) ◽  
pp. 3331 ◽  
Author(s):  
Hao Wang ◽  
Pen-Chi Chiang ◽  
Yanpeng Cai ◽  
Chunhui Li ◽  
Xuan Wang ◽  
...  

The construction materials utilized in the building sector have accounted for a large amount of natural resource and energy consumption. Green building, which has developed over three decades, can be regarded as a management and technical approach for building and construction sectors to achieve resource and energy sustainability in building sectors. Therefore, the development and deployment of green construction materials play an important role in the green building field due to the contribution of sustainable resources and energy. To realize the barriers of energy and resources utilization on green building, the development trend, application, and some case studies on wall materials and thermal insulation materials are described. A summary of plant fibers, recycled wastes, and photochromic glass is developed to show applications of green construction materials, which contributes to sustainable development. The challenges and barriers from business, technical, and policy aspects are also reviewed. Finally, perspectives and prospects of green construction material life-cycle framework are illustrated. This paper presents a snapshot review of the importance of wall materials and thermal insulation materials from the point of view of energy and resources consumption.


2012 ◽  
Vol 204-208 ◽  
pp. 4119-4123
Author(s):  
Bo Wang ◽  
Ji Cheng ◽  
Xiao Han Zhang

New construction materials are the new generations of construction materials which are on the basis of the traditional construction materials, including the new wall materials, thermal insulation materials, water sealing materials, decoration materials and etc. New construction materials industry is developed with the deeply reforming and opening of China. This paper introduces the basic concepts and characters of the new construction materials, analyzes the development and application of the new construction materials, and then discusses countermeasures and suggestions of the development of the new construction materials.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4509 ◽  
Author(s):  
Janusz Adamczyk ◽  
Robert Dylewski

Energy saving is at the heart of sustainable development in the context of climate change. Saving energy is not only the amount of energy that we save, but also reducing emissions of pollutants to the atmosphere, as well as reducing the consumption of energy resources that are used to produce energy. Reducing pollutant emissions and the use of energy resources can be achieved by increasing the use of renewable energy sources, but at present, this method of obtaining energy in the world is not representative. It should be noted that renewable energy devices throughout the life cycle generate environmental impact. Similar to this situation, the building’s thermo-modernization, which is focused on reducing the pressure on the environment of the building’s user, also has an impact on the environment throughout the building’s life cycle. Determining this environmental impact and ecological or economic benefits or costs is the purpose of the following article. Thermo-modernization of the building, for the purposes of the article, is understood as thermal insulation of walls and replacement of the heat source for heating the building and preparation of hot utility water. The need to replace the heat source with a much more ecological one results in Poland from provincial legal regulations announced by virtue of a resolution. In the study, data from the Ecoinvent data library included in the SimaPro computer program was used for the LCA (Life Cycle Assessment) analysis. As a result of thermo-modernization of the representative buildings, large ecological benefits were obtained, while economic costs remain at a high level.


2014 ◽  
Vol 82 ◽  
pp. 466-481 ◽  
Author(s):  
Nuno Pargana ◽  
Manuel Duarte Pinheiro ◽  
José Dinis Silvestre ◽  
Jorge de Brito

2016 ◽  
Vol 678 ◽  
pp. 1-13 ◽  
Author(s):  
Jun Kono ◽  
Yutaka Goto ◽  
York Ostermeyer ◽  
Rolf Frischknecht ◽  
Holger Wallbaum

Thermal insulation material is an important component to reduce the environmental impact of buildings through the reduction of energy consumption in the operation phase. However, the material itself has embodied environmental impacts for the value it provides. Eco-efficiency is a method that quantifies relation between the environmental performance and the created value of a product system. This study investigated contributing factors of the eco-efficiency of thermal insulation materials to support decision making of material manufacturers. For the improvement of eco-efficiency, the assessment was made in two scopes: investigating the contributing factors of impact caused at production processes; and thermal performance through thermo-physical properties. For quantifying environmental impacts, cradle-to-grave life cycle assessment (LCA) of each materials were made. The life cycle impact assessment (LCIA) indicators used were ReCiPe H/A and global warming potential (GWP100a). For the assessment of production process, the inventories of the materials were assigned to six categories: heat, chemicals, electricity, transportation, raw materials and wastes. Among the assessed materials, contribution of electricity and heat within the production process was large for foam glass which had the highest potential to improve the eco-efficiency which was by factor 1.72. The analysis on relation between thermo-physical properties and eco-efficiency based on product data of the materials highlighted the importance of density as an indicator upon development and use. Althoughdensity often gains less attention,the finding suggested the effectiveness of improving the efficiency by having lower density without compensating the performance of the materials.


2021 ◽  
pp. 40
Author(s):  
Asgat M. Gazizov ◽  
Aidar A. Zairov ◽  
Regina R. Yangirova ◽  
Marsel R. Timerov

Sign in / Sign up

Export Citation Format

Share Document