scholarly journals Ecological and Economic Benefits of the “Medium” Level of the Building Thermo-Modernization: A Case Study in Poland

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4509 ◽  
Author(s):  
Janusz Adamczyk ◽  
Robert Dylewski

Energy saving is at the heart of sustainable development in the context of climate change. Saving energy is not only the amount of energy that we save, but also reducing emissions of pollutants to the atmosphere, as well as reducing the consumption of energy resources that are used to produce energy. Reducing pollutant emissions and the use of energy resources can be achieved by increasing the use of renewable energy sources, but at present, this method of obtaining energy in the world is not representative. It should be noted that renewable energy devices throughout the life cycle generate environmental impact. Similar to this situation, the building’s thermo-modernization, which is focused on reducing the pressure on the environment of the building’s user, also has an impact on the environment throughout the building’s life cycle. Determining this environmental impact and ecological or economic benefits or costs is the purpose of the following article. Thermo-modernization of the building, for the purposes of the article, is understood as thermal insulation of walls and replacement of the heat source for heating the building and preparation of hot utility water. The need to replace the heat source with a much more ecological one results in Poland from provincial legal regulations announced by virtue of a resolution. In the study, data from the Ecoinvent data library included in the SimaPro computer program was used for the LCA (Life Cycle Assessment) analysis. As a result of thermo-modernization of the representative buildings, large ecological benefits were obtained, while economic costs remain at a high level.

2019 ◽  
Vol 11 (8) ◽  
pp. 2444 ◽  
Author(s):  
Ming Hu

A comprehensive case study on life-cycle cost analysis (LCCA) was conducted on a two- story education building with a projected 40-year lifespan in College Park, Maryland. The aim of this paper was to (1) create a life cycle assessment model, using an education building to test the model, (2) compare the life cycle cost (LCC) of different renovation scenarios, taking into account added renewable energy resources to achieve the university’s overall carbon neutrality goal, and (3) verify the robustness of the LCC model by conducting sensitivity analysis and studying the influence of different variables. Nine renovation scenarios were constructed by combining six renovation techniques and three renewable energy resources. The LCCA results were then compared to understand the cost-effective relation between implementing energy reduction techniques and renewable energy sources. The results indicated that investing in energy-efficient retrofitting techniques was more cost-effective than investments in renewable energy sources in the long term. In the optimum scenario, renovation and renewable energy, when combined, produced close to a 90% reduction in the life cycle cost compared to the baseline. The payback period for the initial investment cost, including avoided electricity costs, varies from 1.4 to 4.1 years. This suggests that the initial investment in energy-efficient renovation is the primary factor in the LCC of an existing building.


2021 ◽  
Vol 11 (6) ◽  
pp. 2770
Author(s):  
Anna Stoppato ◽  
Alberto Benato ◽  
Francesco De Vanna

The aim of this study is to assess the environmental impact of storage systems integrated with energy plants powered by renewable sources. Stationary storage systems proved to be a valid solution for regulating networks, supporting frequency, and managing peaks in electricity supply and demand. Recently, their coupling with renewable energy sources has been considered a strategic means of exploiting their high potential since it permits them to overcome their intrinsic uncertainty. Therefore, the storage systems integration with distributed generation can improve the performance of the networks and decrease the costs associated with energy production. However, a question remains regarding the overall environmental sustainability of the final energy production. Focusing on electrochemical accumulators, the problems mainly concern the use of heavy metals and/or impacting chemical components of storage at the center of environmental hazard debates. In this paper, an environmental assessment from a life-cycle perspective of the hybrid energy systems powered by fossil and renewable sources located on two non-interconnected minor islands is presented. Existing configurations are compared with new ones obtained with the addition of batteries for the exploitation of renewable energy. The results show that, for batteries, the assembly phase, including raw material extraction, transport, and assembly, accounts for about 40% of the total, while the remaining part is related to end-of-life processes. The reuse and recycling of the materials have a positive effect on overall impacts. The results also show that the overall impact is strongly related to the actual energy mix of the place where batteries are installed, even if it is usually lower than that of the solution without the batteries. The importance of a proper definition of the functional unit in the analysis is also emphasized in this work.


2019 ◽  
Author(s):  
European Marine Board

We are entering a legacy era for the offshore oil and gas industry. As operations ramp down, could scientific evidence hold the key to reducing economic cost and environmental impact of full decommissioning?This Policy Brief assesses the role of marine science in reducing the environmental impact of decommissioning and highlights the scientific questions that now need to be answered to settle the debate on what should be done with these structures. Recent estimates suggest that there are currently around 1,350 oil and gas installations in the North Sea and North Atlantic regions and 1,800 offshore wind turbines in North Sea region alone. And this number is rising. The total cost of full decommissioning of oil and gas installations in the North Sea alone for the period 2015 to 2040 is estimated at between US$70 and US$82 billion. The numbers of installations requiring decommissioning is also set to increase dramatically as renewable energy devices begin reaching the end of their operational life, and as plans for exploiting renewable energy sources in the near future grow. Globally, industry and governments are embracing different decommissioning approaches, from full removal to the production of artificial reefs. The question of what is best for the environment is still to be answered.The INSITE programme, highlighted in this Policy Brief as novel model which could be implemented more widely, is a unique collaboration between leading energy companies and research. It is already funding research which is exploring the influence of man-made structures on the marine ecosystem in order to provide a solid scientific basis for future decision-making.Ultimately, appropriate decisions need to be made in the very near future regarding the decommissioning of oil and gas and renewable energy structures. At present, there remains a need for more scientific research to better inform the decision-making process regarding their fate.


2021 ◽  
pp. 1-7
Author(s):  
Obadia Kyetuza Bishoge

Currently, every country is striving to realize development for its people. Thus, to achieve this there is a need for ensuring access to reliable energy at all levels. The world is currently relying on the use of non-renewable energy such as fuels, and coal. However, these sources are not environmental friendly. Thus, renewable energy sources such as hydropower, solar energy, geothermal, and biofuels must be emphasized to replace the use of non-renewable energies. People need to understand well the relationship between energy resources and the environment. This paper, therefore, aims at providing the nexus of energy resources and the environment. To achieve this, the author has explained well the concept of energy and energy resources; energy uses and energy efficiency and energy security. Moreover, the author has discussed the impact of energy resources on the environment. Finally, energy savings and practices to best energy use; use of technologies to reduce the pollutant emissions in the atmosphere; and investment in renewable technologies are needed for attaining sustainable energy and environment.


2020 ◽  
Vol 2 (7) ◽  
pp. 171-184
Author(s):  
Z. U. SAIPOV ◽  
◽  
G. A. ARIFDZHANOV ◽  

Energy is one of the main pillars of the state’s economy, which is currently facing serious problems due to depletion of mineral energy resources and the threatening environment. As a result, presently around the world there is a rapid growth and development of energy-efficient technologies and the use of renewable energy sources (RES), providing an increase in energy resources, as well as environmental and social effects. One of the most relevant and promising areas of renewable energy development is the disposal and processing of organic waste in biogas plants, and this is particularly relevant in agricultural regions. In this regard, this paper considers the state and prospects for the development of bioenergy in agricultural regions of Uzbekistan, where half of the population of the republic lives. The potential of organic waste from livestock and poultry farming of the agricultural sector was determined, and it was revealed that the use of biogas plants for the disposal of manure and litter is clearly a profitable production and requires close attention from rural producers. The introduction of biogas technologies for the bulk of agricultural producers is an urgent task, that will ensure not only a solution to the waste problem, but it will also provide a solution to energy, agricultural, environmental and social problems in rural regions of the republic.


2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1779
Author(s):  
Syed Rahman ◽  
Irfan Khan ◽  
Khaliqur Rahman ◽  
Sattam Al Otaibi ◽  
Hend I. Alkhammash ◽  
...  

This paper presents a novel, scalable, and modular multiport power electronic topology for the integration of multiple resources. This converter is not only scalable in terms of the integration of multiple renewable energy resources (RES) and storage devices (SDs) but is also scalable in terms of output ports. Multiple dc outputs of a converter are designed to serve as input to the stacking modules (SMs) of the modular multilevel converter (MMC). The proposed multiport converter is bidirectional in nature and superior in terms of functionality in a way that a modular universal converter is responsible for the integration of multiple RES/SDs and regulates multiple dc output ports for SMs of MMC. All input ports can be easily integrated (and controlled), and output ports also can be controlled independently in response to any load variations. An isolated active half-bridge converter with multiple secondaries acts as a central hub for power processing with multiple renewable energy resources that are integrated at the primary side. To verify the proposed converter, a detailed design of the converter-based system is presented along with the proposed control algorithm for managing power on the individual component level. Additionally, different modes of power management (emulating the availability/variability of renewable energy sources (RES)) are exhibited and analyzed here. Finally, detailed simulation results are presented in detail for the validation of the proposed concepts and design process.


2021 ◽  
Vol 12 (3) ◽  
pp. 93
Author(s):  
Daniel Arturo Maciel Fuentes ◽  
Eduardo Gutiérrez González

In recent decades, urban air pollution has increased considerably in Mexico City, leading to harmful effects on the ecosystem. To reduce pollutant emissions, new sustainable technologies have been adopted in the transport sector. To date, no studies have conducted a technoeconomic analysis of the environmental impact of electric vehicles (EVs) in regard to taxis in Mexico. To address this gap in the research, this study aimed to perform a cost-environmental impact assessment of electric taxi introduction in Mexico City using the life-cycle cost (LCC) methodology and the greenhouse gas (GHG) emissions assessment. Furthermore, a sensitivity analysis was performed to identify parameters with the greatest influence on the LCC. The LCC of EVs was found to be larger than that of internal combustion vehicles (ICVs); the acquisition cost was identified as the greatest contributor to the total LCC, followed by the maintenance cost. Worldwide, mixed results have been reported due to differences in the use of local parameters and values. To promote EVs, it is necessary to reduce either acquisition costs or battery costs. The environmental analysis showed that there is only a slight reduction in GHG emissions with electric taxi introduction. Nevertheless, cleaner renewable energy sources must be adopted and considered in order to achieve a much greater reduction and take full advantage of the benefits of EVs.


2021 ◽  
Vol 13 (1) ◽  
pp. 396
Author(s):  
Norasikin Ahmad Ludin ◽  
Nurfarhana Alyssa Ahmad Affandi ◽  
Kathleen Purvis-Roberts ◽  
Azah Ahmad ◽  
Mohd Adib Ibrahim ◽  
...  

Sustainability has been greatly impacted by the reality of budgets and available resources as a targeted range of carbon emission reduction greatly increases due to climate change. This study analyses the technical and economic feasibility for three types of solar photovoltaic (PV) renewable energy (RE) systems; (i) solar stand-alone, a non-grid-connected building rooftop-mounted structure, (ii) solar rooftop, a grid-connected building rooftop-mounted structure, (iii) solar farm, a grid-connected land-mounted structure in three tropical climate regions. Technical scientific and economic tools, including life cycle assessment (LCA) and life cycle cost assessment (LCCA) with an integrated framework from a Malaysian case study were applied to similar climatic regions, Thailand, and Indonesia. The short-term, future scaled-up scenario was defined using a proxy technology and estimated data. Environmental locations for this scenario were identified, the environmental impacts were compared, and the techno-economic output were analysed. The scope of this study is cradle-to-grave. Levelised cost of energy (LCOE) was greatly affected due to PV performance degradation rate, especially the critical shading issues for large-scale installations. Despite the land use impact, increased CO2 emissions accumulate over time with regard to energy mix of the country, which requires the need for long-term procurement of both carbon and investment return. With regards to profitably, grid-connected roof-mounted systems achieve the lowest LCOE as compared to other types of installation, ranging from 0.0491 USD/kWh to 0.0605 USD/kWh under a 6% discounted rate. A simple payback (SPB) time between 7–10 years on average depends on annual power generated by the system with estimated energy payback of 0.40–0.55 years for common polycrystalline photovoltaic technology. Thus, maintaining the whole system by ensuring a low degradation rate of 0.2% over a long period of time is essential to generate benefits for both investors and the environment. Emerging technologies are progressing at an exponential rate in order to fill the gap of establishing renewable energy as an attractive business plan. Life cycle assessment is considered an excellent tool to assess the environmental impact of renewable energy.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7525
Author(s):  
Mariusz Niekurzak

The aim of the manuscript was to present the collective results of research on the profitability of using various renewable sources in Poland with the greatest development potential. In the paper, the economic parameters of various investment projects were determined and calculated, i.e., Net Capital Value (NPV), Internal Rate of Return (IRR) and the Period of Return on Invested Capital (PBT). The economic assessment of the use of RES technologies was supplemented with the assessment of environmental benefits. The ecological criterion adopted in the study was the assessment of the potential and costs of reducing greenhouse gas emissions as a result of replacing fossil fuels with renewable energy technologies. On the basis of the constructed economic model to assess the profitability of investments, it has been shown that the analyzed projects will start to bring, depending on their type and technical specification, measurable economic benefits in the form of a reduction in the amount of energy purchased on an annual basis and environmental benefits in the form of reduction of carbon dioxide emissions to the atmosphere. Moreover, the calculations show a high potential for the use of certain renewable sources in Poland, which contributes to the fulfillment of energy and emission obligations towards the EU. The analyzes and research of the Polish energy market with the use of the presented models have shown that the project is fully economically justified and will allow investors to make a rational decision on the appropriate selection of a specific renewable energy source for their investment. The presented economic models to assess the profitability of investments in renewable energy sources can be successfully used in other countries and can also be a starting point for a discussion about the direction of energy development. Due to the lack of collective, original and up-to-date research on the domestic market, the manuscript provides the reader with the necessary knowledge regarding the legitimacy of using renewable energy sources, investment and environmental profitability.


Sign in / Sign up

Export Citation Format

Share Document