Analysis of New Construction Materials and its Development

2012 ◽  
Vol 204-208 ◽  
pp. 4119-4123
Author(s):  
Bo Wang ◽  
Ji Cheng ◽  
Xiao Han Zhang

New construction materials are the new generations of construction materials which are on the basis of the traditional construction materials, including the new wall materials, thermal insulation materials, water sealing materials, decoration materials and etc. New construction materials industry is developed with the deeply reforming and opening of China. This paper introduces the basic concepts and characters of the new construction materials, analyzes the development and application of the new construction materials, and then discusses countermeasures and suggestions of the development of the new construction materials.

2018 ◽  
Vol 10 (9) ◽  
pp. 3331 ◽  
Author(s):  
Hao Wang ◽  
Pen-Chi Chiang ◽  
Yanpeng Cai ◽  
Chunhui Li ◽  
Xuan Wang ◽  
...  

The construction materials utilized in the building sector have accounted for a large amount of natural resource and energy consumption. Green building, which has developed over three decades, can be regarded as a management and technical approach for building and construction sectors to achieve resource and energy sustainability in building sectors. Therefore, the development and deployment of green construction materials play an important role in the green building field due to the contribution of sustainable resources and energy. To realize the barriers of energy and resources utilization on green building, the development trend, application, and some case studies on wall materials and thermal insulation materials are described. A summary of plant fibers, recycled wastes, and photochromic glass is developed to show applications of green construction materials, which contributes to sustainable development. The challenges and barriers from business, technical, and policy aspects are also reviewed. Finally, perspectives and prospects of green construction material life-cycle framework are illustrated. This paper presents a snapshot review of the importance of wall materials and thermal insulation materials from the point of view of energy and resources consumption.


2019 ◽  
Vol 43 (5) ◽  
pp. 428-455 ◽  
Author(s):  
Dileep Kumar ◽  
Patrick X.W. Zou ◽  
Rizwan Ahmed Memon ◽  
MD Morshed Alam ◽  
Jay G Sanjayan ◽  
...  

Heat transfer through building opaque envelope is responsible for approximately half of the total heat loss and gain to and from the surroundings. Therefore, insulation materials are commonly used in the building envelope to reduce the heat transfer. Recently, lightweight wall materials with lower thermal conductivity are used in construction along with the commonly used materials such as heavy concrete and earthen materials. In this perspective, there is a need to understand the optimum insulation thickness for different types of building construction materials to minimize unnecessary usage of insulation materials. This study investigated the optimum insulation thickness for different construction materials following a life-cycle approach, where an analytical optimization methodology based on the degree-days method and life-cycle cost analysis was used. In total, 4 insulation materials and 15 building construction materials were considered in the optimization study. The objective function was to minimize life-cycle cost corresponding to the decision variables including insulation thickness and the thermal conductivity of insulation and wall materials. The results showed that the use of insulation in lightweight wall materials is not economically feasible because of their negligible cost-saving potential (below US$2.5/m2-year). However, the walls with heavy concrete and earthen materials that have high thermal mass must be insulated due to their highest cost-saving potential (US$14–26.39/m2-year).


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3415 ◽  
Author(s):  
Dylewski

The present study introduces the concept of ecological cost of heating modeled on the economic cost of heating. A method of determining these costs is also proposed. This method allows for an analytical description of the ecological as well as economic net present value of a thermal insulation investment. Consequently, it is possible to determine the optimal values for ecological reasons of the heat transfer coefficient of the building external wall and the thickness of thermal insulation. The present study uses life-cycle assessment (LCA) analysis to determine the environmental impact of thermal insulation materials used to insulate the external vertical wall and to determine the environmental impact of thermal energy production in the energy phase of the building’s life cycle. Various variants characteristic of Polish conditions were studied. Different types of construction materials of the wall, types of heat sources, thermal insulation materials and climate zones occurring in Poland were considered. For all analysed variants, the obtained thermal insulation thickness, optimum for ecological reasons, was much larger than the optimum for economic reasons. Even at the thickness of thermal insulation optimum for economic reasons, the investment was profitable for ecological reasons, i.e., a reduction in environmental load was obtained as a result of the thermal insulation investment. On the basis of the conducted study, it can be concluded that it is preferable to use thermal insulation thicknesses larger than required by current regulations and larger than optimum for economic reasons. The ecological benefits of thermal insulation investments are then significantly greater, with not much smaller economic benefits.


2016 ◽  
Vol 723 ◽  
pp. 711-715
Author(s):  
De Feng Xu ◽  
Sheng Nan Tao ◽  
Li Mei Chen ◽  
Shu Chao Cheng ◽  
Fei Xiao ◽  
...  

At present, the comprehensive utilization of crop straws exist the problem of the lower industrial utilization in Jilin Province, China. It’s well-known that the industrial conversion of crop straws are often used as the building wall materials and thermal insulation materials in our country. According to the above two questions, this paper elaborates the domestic research situation of crop straws that serve as building wall materials and thermal insulation materials, and summarizes the fabrication process, mechanical property and thermal performance of the crop straws as building wall materials and thermal insulation materials. Finally, the article puts forward three key problems of crop straws, which are used as the building wall materials and thermal insulation materials. I hope that this paper can provide valuable reference for speeding up the comprehensive utilization of crop straws in Jilin Province.


2014 ◽  
Vol 899 ◽  
pp. 435-439 ◽  
Author(s):  
Jiri Zach ◽  
Jitka Peterková

Increasing demand for new progressive construction materials requires development of modern environmentally friendly materials with excellent end-use properties and reasonable price. One of the main objectives of material research in building industry is using renewable resources of raw materials of industrial waste for development of new construction materials. Current trend of thermal insulation of building constructions results in development of environmentally friendly insulation materials based on renewable material resources from agriculture and stock farming, which could became alternative for current common use insulation materials in the future. Paper describes results of research and development of materials based on natural fibres.


2012 ◽  
Vol 22 (1) ◽  
pp. 131-141
Author(s):  
Qi Yanjun ◽  
Wang Xuegui ◽  
Cui Yu ◽  
Zhang Heping

Author(s):  
Mohanapriya Venkataraman ◽  
Rajesh Mishra ◽  
Jiri Militky ◽  
Dana Kremenakova ◽  
Petru Michal

Author(s):  
Steven Nolan ◽  
Marco Rossini ◽  
Chase Knight ◽  
Antonio Nanni

AbstractWithin the last century, coastal structures for infrastructure applications have traditionally been constructed with timber, structural steel, and/or steel-reinforced/prestressed concrete. Given asset owners’ desires for increased service-life; reduced maintenance, repair and rehabilitation; liability; resilience; and sustainability, it has become clear that traditional construction materials cannot reliably meet these challenges without periodic and costly intervention. Fiber-Reinforced Polymer (FRP) composites have been successfully utilized for durable bridge applications for several decades, demonstrating their ability to provide reduced maintenance costs, extend service life, and significantly increase design durability. This paper explores a representative sample of these applications, related specifically to internal reinforcement for concrete structures in both passive (RC) and pre-tensioned (PC) applications, and contrasts them with the time-dependent effect and cost of corrosion in transportation infrastructure. Recent development of authoritative design guidelines within the US and international engineering communities is summarized and a examples of RC/PC verses FRP-RC/PC presented to show the sustainable (economic and environmental) advantage of composite structures in the coastal environment.


Sign in / Sign up

Export Citation Format

Share Document