scholarly journals Can LiDARs Replace Meteorological Masts in Wind Energy?

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3680 ◽  
Author(s):  
Jay Prakash Goit ◽  
Susumu Shimada ◽  
Tetsuya Kogaki

This paper discusses whether profiling LiDARs can replace meteorological tower-based wind speed measurement for wind energy applications without severely compromising accuracy. To this end, the accuracy of LiDAR is evaluated in a moderately complex terrain by comparing long-term wind data measured by a profiling LiDAR against those obtained from tower-mounted cup and sonic anemometers. The LiDAR-measured wind speeds show good agreement with those measured using the sonic anemometer, with the slope of regression line being 1.0 and R 2 > 0.99 . Furthermore, the turbulence intensity obtained from the LiDAR has better agreement with that from the sonic anemometer compared to the cup anemometer which showed the lowest turbulence intensities among the three devices. A comparison of the turbulence intensity obtained from the 90th percentile of the standard deviation distribution shows that the LiDAR-measured turbulence intensities are mostly larger (by 2% or less) than those measured by the sonic anemometer. The gust factors obtained from both devices roughly converged to 1.9, showing that LiDAR is able to measure peak wind speed with acceptable accuracy. The accuracy of the wind speed and power distributions measured using the profiling LiDAR are then evaluated by comparing them against the corresponding distributions obtained from the sonic anemometer. Furthermore, the annual capacity factor—for the NREL 5-MW wind turbine—from the LiDAR-measured wind speed is 2% higher than that obtained from the sonic anemometer-measured wind speed. Numerical simulations are performed using OpenFAST in order to compute fatigue loads for the wind speed and turbulence distributions for the LiDAR and the sonic anemometer measurements. It is found that the 20 years lifetime Damage Equivalent Loads (DELs) computed for the LiDAR wind speed were higher than those for the sonic anemometer wind speeds, by 2%–6% for the blade root bending moments and by 11%–13% for the tower base bending moments. This study shows that even with some shortcomings, profiling LiDARs can measure wind speeds and turbulence intensities with acceptable accuracy. Therefore, they can be used to analyze wind resource and wind power potential of prospective sites, and to evaluate whether those sites are suitable for wind energy development.

2016 ◽  
Author(s):  
Jennifer F. Newman ◽  
Andrew Clifton

Abstract. Remote sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, commercially available lidars in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The algorithm, L-TERRA, can be applied using only data from a stand-alone commercially available lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. L-TERRA was tested on data from three sites – two in flat terrain and one in semicomplex terrain. L-TERRA significantly reduced errors in lidar turbulence at all three sites, even when the machine-learning portion of the model was trained on one site and applied to a different site. Errors in turbulence were then related to errors in power through the use of a power prediction model for a simulated 1.5 MW turbine. L-TERRA also reduced errors in power significantly at all three sites, although moderate power errors remained for periods when the mean wind speed was close to the rated wind speed of the turbine and periods when variance contamination had a large effect on the lidar turbulence error. Future work will include the use of a lidar simulator to better understand how different factors affect lidar turbulence error and to determine how these errors can be reduced using information from a stand-alone lidar.


2021 ◽  
Author(s):  
Moritz Lochmann ◽  
Heike Kalesse-Los ◽  
Michael Schäfer ◽  
Ingrid Heinrich ◽  
Ronny Leinweber

<p>Wind energy is and will be one of the key technologies for a transition to green electricity. However, the smooth integration of the generated wind energy into the electrical grid depends on reliable power forecasts. Rapid changes in power generation, so-called ramps, are not always reflected properly in NWP data and pose a challenge for power predictions and, therefore, grid operation. While contributions to the topic of ramp forecasting increased in the recent years, this work approaches the mitigation of deviations from the forecast more directly.</p> <p>The power forecast tool used here is based on an artificial neural network, trained and evaluated on multiple years of data. It is applied in comparison to power generation data for a 44 MW wind farm in Brandenburg. For short-term wind power forecasts, NWP wind speeds in this power forecast tool are replaced with recent Doppler Lidar wind profiles and nacelle wind speed observations from ultra-sonic anemometers, aiming to provide an easy-to-implement way to reduce negative impacts of ramps. Compared to NWP input data, this persistence approach with observational data aims to improve the forecast quality especially during the time of wind ramps.</p> <p>Different ramp definitions and forecast horizons are explored. In general, the number of ramps detected increases dramatically when using wind speed observations instead of the (too smooth) NWP model data. In addition, the mean deviation between power forecast and actual power generation around ramp events decreases, indicating a reduced need for balancing efforts.</p>


2018 ◽  
Vol 11 (11) ◽  
pp. 6339-6350 ◽  
Author(s):  
Dominique P. Held ◽  
Jakob Mann

Abstract. Continuous-wave (cw) lidar systems offer the possibility to remotely sense wind speed but are also affected by differences in their measurement process compared to more traditional anemometry like cup or sonic anemometers. Their large measurement volume leads to an attenuation of turbulence. In this paper we study how different methods to derive the radial wind speed from a lidar Doppler spectrum can mitigate turbulence attenuation. The centroid, median and maximum methods are compared by estimating transfer functions and calculating root mean squared errors (RMSEs) between a lidar and a sonic anemometer. Numerical simulations and experimental results both indicate that the median method performed best in terms of RMSE and also had slight improvements over the centroid method in terms of volume averaging reduction. The maximum, even though it uses the least amount of information from the Doppler spectrum, performs best at mitigating the volume averaging effect. However, this benefit comes at the cost of increased signal noise due to discretisation of the maximum method. Thus, when the aim is to mitigate the effect of turbulence attenuation and obtain wind speed time series with low noise, from the results of this study we recommend using the median method. If the goal is to measure average wind speeds, all three methods perform equally well.


2017 ◽  
Vol 10 (2) ◽  
pp. 393-407 ◽  
Author(s):  
Katherine McCaffrey ◽  
Paul T. Quelet ◽  
Aditya Choukulkar ◽  
James M. Wilczak ◽  
Daniel E. Wolfe ◽  
...  

Abstract. The eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign took place in March through May 2015 at the Boulder Atmospheric Observatory, utilizing its 300 m meteorological tower, instrumented with two sonic anemometers mounted on opposite sides of the tower at six heights. This allowed for at least one sonic anemometer at each level to be upstream of the tower at all times and for identification of the times when a sonic anemometer is in the wake of the tower frame. Other instrumentation, including profiling and scanning lidars aided in the identification of the tower wake. Here we compare pairs of sonic anemometers at the same heights to identify the range of directions that are affected by the tower for each of the opposing booms. The mean velocity and turbulent kinetic energy are used to quantify the wake impact on these first- and second-order wind measurements, showing up to a 50 % reduction in wind speed and an order of magnitude increase in turbulent kinetic energy. Comparisons of wind speeds from profiling and scanning lidars confirmed the extent of the tower wake, with the same reduction in wind speed observed in the tower wake, and a speed-up effect around the wake boundaries. Wind direction differences between pairs of sonic anemometers and between sonic anemometers and lidars can also be significant, as the flow is deflected by the tower structure. Comparisons of lengths of averaging intervals showed a decrease in wind speed deficit with longer averages, but the flow deflection remains constant over longer averages. Furthermore, asymmetry exists in the tower effects due to the geometry and placement of the booms on the triangular tower. An analysis of the percentage of observations in the wake that must be removed from 2 min mean wind speed and 20 min turbulent values showed that removing even small portions of the time interval due to wakes impacts these two quantities. However, a vast majority of intervals have no observations in the tower wake, so removing the full 2 or 20 min intervals does not diminish the XPIA dataset.


2016 ◽  
Author(s):  
Katherine McCaffrey ◽  
Paul Quelet ◽  
Aditya Choukulkar ◽  
James M. Wilczak ◽  
Daniel E. Wolfe ◽  
...  

Abstract. The eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign took place in March through May 2015 at the Boulder Atmospheric Observatory, utilizing its 300-meter meteorological tower, instrumented with two sonic anemometers mounted on opposite sides of the tower at six heights. This allowed for at least one sonic anemometer at each level to be upstream of the tower at all times, and for identification of the times when a sonic anemometer is in the wake of the tower frame. Other instrumentation, including profiling and scanning lidars aided in the identification of the tower wake. Here we compare pairs of sonic anemometers at the same heights to identify the range of directions that are affected by the tower for each of the opposing booms. The mean velocity and turbulent kinetic energy are used to quantify the wake impact on these first- and second-order wind measurements, showing up to a 50 % reduction in wind speed and an order of magnitude increase in turbulent kinetic energy. Comparisons of wind speeds from profiling and scanning lidars confirmed the extent of the tower wake, with the same reduction in wind speed observed in the tower wake, and a speed-up effect around the wake boundaries. Wind direction differences between pairs of sonic anemometers and between sonic anemometers and lidars can also be significant, as the flow is deflected by the tower structure. Comparisons of lengths of averaging intervals showed a decrease in wind speed deficit with longer averages, but the flow deflection remains constant over longer averages. Furthermore, asymmetry exists in the tower effects due to the geometry and placement of the booms on the triangular tower. An analysis of the percentage of observations in the wake that must be removed from 2-min mean wind speed and 20-min turbulent values showed that removing even small portions of the time interval due to wakes impacts these two quantities. However, a vast majority of intervals have no observations in the tower wake, so removing the full 2- or 20-min intervals does not diminish the XPIA dataset.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3007 ◽  
Author(s):  
C. Lopez-Villalobos ◽  
O. Rodriguez-Hernandez ◽  
R. Campos-Amezcua ◽  
Guillermo Hernandez-Cruz ◽  
O. Jaramillo ◽  
...  

Wind speed turbulence intensity is a crucial parameter in designing the structure of wind turbines. The IEC61400 considers the Normal Turbulence Model (NTM) as a reference for fatigue load calculations for small and large wind turbines. La Ventosa is a relevant region for the development of the wind power sector in Mexico. However, in the literature, there are no studies on this important parameter in this zone. Therefore, we present an analysis of the turbulence intensity to improve the understanding of local winds and contribute to the development of reliable technical solutions. In this work, we experimentally estimate the turbulence intensity of the region and the wind shear exponent in terms of atmospheric stability to analyze the relation of these design parameters with the recommended standard for large and small wind turbines. The results showed that the atmosphere is strongly convective and stable in most of the eleven months studied. The turbulence intensity analysis showed that for a range of wind speeds between 2 and 24 m/s, some values of the variable measured were greater than those recommended by the standard, which corresponds to 388 hours of turbulence intensity being underestimated. This may lead to fatigue loads and cause structural damage to the technologies installed in the zone if they were not designed to operate in these wind speed conditions.


2017 ◽  
Vol 34 (5) ◽  
pp. 1183-1191 ◽  
Author(s):  
Ross T. Palomaki ◽  
Nathan T. Rose ◽  
Michael van den Bossche ◽  
Thomas J. Sherman ◽  
Stephan F. J. De Wekker

AbstractUnmanned aerial vehicles are increasingly used to study atmospheric structure and dynamics. While much emphasis has been on the development of fixed-wing unmanned aircraft for atmospheric investigations, the use of multirotor aircraft is relatively unexplored, especially for capturing atmospheric winds. The purpose of this article is to demonstrate the efficacy of estimating wind speed and direction with 1) a direct approach using a sonic anemometer mounted on top of a hexacopter and 2) an indirect approach using attitude data from a quadcopter. The data are collected by the multirotor aircraft hovering 10 m above ground adjacent to one or more sonic anemometers. Wind speed and direction show good agreement with sonic anemometer measurements in the initial experiments. Typical errors in wind speed and direction are smaller than 0.5 and 30°, respectively. Multirotor aircraft provide a promising alternative to traditional platforms for vertical profiling in the atmospheric boundary layer, especially in conditions where a tethered balloon system is typically deployed.


2016 ◽  
Vol 9 (4) ◽  
pp. 1653-1669 ◽  
Author(s):  
Hui Wang ◽  
Rebecca J. Barthelmie ◽  
Sara C. Pryor ◽  
Gareth. Brown

Abstract. Doppler lidars are frequently operated in a mode referred to as arc scans, wherein the lidar beam scans across a sector with a fixed elevation angle and the resulting measurements are used to derive an estimate of the n minute horizontal mean wind velocity (speed and direction). Previous studies have shown that the uncertainty in the measured wind speed originates from turbulent wind fluctuations and depends on the scan geometry (the arc span and the arc orientation). This paper is designed to provide guidance on optimal scan geometries for two key applications in the wind energy industry: wind turbine power performance analysis and annual energy production prediction. We present a quantitative analysis of the retrieved wind speed uncertainty derived using a theoretical model with the assumption of isotropic and frozen turbulence, and observations from three sites that are onshore with flat terrain, onshore with complex terrain and offshore, respectively. The results from both the theoretical model and observations show that the uncertainty is scaled with the turbulence intensity such that the relative standard error on the 10 min mean wind speed is about 30 % of the turbulence intensity. The uncertainty in both retrieved wind speeds and derived wind energy production estimates can be reduced by aligning lidar beams with the dominant wind direction, increasing the arc span and lowering the number of beams per arc scan. Large arc spans should be used at sites with high turbulence intensity and/or large wind direction variation.


2020 ◽  
Vol 37 (2) ◽  
pp. 279-297 ◽  
Author(s):  
Agustinus Ribal ◽  
Ian R. Young

AbstractGlobal ocean wind speed observed from seven different scatterometers, namely, ERS-1, ERS-2, QuikSCAT, MetOp-A, OceanSat-2, MetOp-B, and Rapid Scatterometer (RapidScat) were calibrated against National Data Buoy Center (NDBC) data to form a consistent long-term database of wind speed and direction. Each scatterometer was calibrated independently against NDBC buoy data and then cross validation between scatterometers was performed. The total duration of all scatterometer data is approximately 27 years, from 1992 until 2018. For calibration purposes, only buoys that are greater than 50 km offshore were used. Moreover, only scatterometer data within 50 km of the buoy and for which the overpass occurred within 30 min of the buoy recording data were considered as a “matchup.” To carry out the calibration, reduced major axis (RMA) regression has been applied where the regression minimizes the size of the triangle formed by the vertical and horizontal offsets of the data point from the regression line and the line itself. Differences between scatterometer and buoy data as a function of time were investigated for long-term stability. In addition, cross validation between scatterometers and independent altimeters was also performed for consistency. The performance of the scatterometers at high wind speeds was examined against buoy and platform measurements using quantile–quantile (Q–Q) plots. Where necessary, corrections were applied to ensure scatterometer data agreed with the in situ wind speed for high wind speeds. The resulting combined dataset is believed to be unique, representing the first long-duration multimission scatterometer dataset consistently calibrated, validated and quality controlled.


Sign in / Sign up

Export Citation Format

Share Document