scholarly journals Dynamic Modeling and Preliminary Performance Analysis of a New Solar Thermal Reverse Osmosis Desalination Process

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 4015 ◽  
Author(s):  
Clément Lacroix ◽  
Maxime Perier-Muzet ◽  
Driss Stitou

Reverse osmosis (RO) is a desalination technique that is commonly preferred because of its low energy consumption. In this paper, an innovative, thermally powered RO desalination process is presented. This new thermo-hydraulic process uses solar thermal energy in order to realize the pressurization of the saltwater beyond its osmotic pressure to allow its desalination. This pressurization is enabled thanks to a piston or a membrane set in motion in a reservoir by a working fluid that follows a thermodynamic cycle similar to an Organic Rankine Cycle. In this cycle, the evaporator is heated by low-grade heat, such as the one delivered by flat-plate solar collectors, while the condenser is cooled by the saltwater to be treated. Such an installation, designed for small-scale (1 to 10 m3·day−1) brackish water desalination, should enable an average daily production of 500 L of drinkable water per m² of solar collectors with a specific thermal energy consumption of about 6 kWhth·m−3. A dynamic modeling of the whole process has been developed in order to study its dynamic cyclic operating behavior under variable solar thermal power, to optimize its design, and to maximize its performances. This paper presents the preliminary performance results of such a solar-driven desalination process.

2013 ◽  
Vol 24 (4) ◽  
pp. 51-62
Author(s):  
Shadreck M. Situmbeko ◽  
Freddie L. Inambao

Solar thermal energy (STE) technology refers to the conversion of solar energy to readily usable energy forms. The most important component of a STE technology is the collectors; these absorb the shorter wavelength solar energy (400-700nm) and convert it into usable, longer wavelength (about 10 times as long) heat energy. Depending on the quality (temperature and intensity) of the resulting thermal energy, further conversions to other energy forms such as electrical power may follow. Currently some high temperature STE technologies for electricity production have attained technical maturity; technologies such as parabolic dish (commercially available), parabolic trough and power tower are only hindered by unfavourable market factors including high maintenance and operating costs. Low temperature STEs have so far been restricted to water and space heating; however, owing to their lower running costs and almost maintenance free operation, although operating at lower efficiencies, may hold a key to future wider usage of solar energy. Low temperature STE conversion technology typically uses flat plate and low concentrating collectors such as parabolic troughs to harness solar energy for conversion to mechanical and/or electrical energy. These collector systems are relatively cheaper, simpler in construction and easier to operate due to the absence of complex solar tracking equipment. Low temperature STEs operate within temperatures ranges below 300oC. This research work is geared towards developing feasible low temperature STE conversion technology for electrical power generation. Preliminary small-scale concept plants have been designed at 500Wp and 10KWp. Mathematical models of the plant systems have been developed and simulated on the EES (Engineering Equation Solver) platform. Fourteen candidate working fluids and three cycle configurations have been analysed with the models. The analyses included a logic model selector through which an optimal conversion cycle configuration and working fluid mix was established. This was followed by detailed plant component modelling; the detailed component model for the solar field was completed and was based on 2-dimensional segmented thermal network, heat transfer and thermo fluid dynamics analyses. Input data such as solar insolation, ambient temperature and wind speed were obtained from the national meteorology databases. Detailed models of the other cycle components are to follow in next stage of the research. This paper presents findings of the system and solar field component.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Hui Hong ◽  
Hongguang Jin ◽  
Jun Sui ◽  
Jun Ji

Solar thermochemical processes inherently included the conversion of solar thermal energy into chemical energy. In this paper, a new mechanism of upgrading the energy level of solar thermal energy at around 200°C was revealed based on the second law thermodynamics and was then experimentally proven. An expression was derived to describe the upgrading of the energy level from low-grade solar thermal energy to high-grade chemical energy. The resulting equation explicitly reveals the interrelations of energy levels between middle-temperature solar thermal energy and methanol fuel, and identifies the interactions of mean solar flux and the reactivity of methanol decomposition. The proposed mechanism was experimentally verified by using the fabricated 5kW prototype of the receiver∕reactor. The agreement between the theoretical and the experimental results proves the validity of the mechanism for upgrading the energy level of low-grade solar thermal energy by integrating clean synthetic fuel. Moreover, the application of this new middle-temperature solar∕methanol hybrid thermochemical process into a combined cycle is expected to have a net solar-to-electric efficiency of about 27.8%, which is competitive with other solar-hybrid thermal power plants using high-temperature solar thermal energy. The results obtained here indicate the possibility of utilizing solar thermal energy at around 200°C for electricity generation with high efficiency by upgrading the energy level of solar thermal energy, and provide an enhancement to solar thermal power plants with the development of this low-grade solar thermochemical technology in the near future.


Author(s):  
Thomas A. Cooper ◽  
James S. Wallace

A preliminary design and feasibility study has been conducted for a 200 kWe solar thermal power plant for operation in Ontario. The objective of this study is to assess the feasibility of small-scale commercial solar thermal power production in areas of relatively low insolation. The design has been developed for a convention centre site in Toronto, Ontario. The plant utilizes a portion of the large flat roof area of the convention centre to accommodate the collector array. Each power plant module provides a constant electrical output of 200 kWe throughout the year. The system is capable of maintaining the constant output during periods of low insolation, including night-time hours and cloudy periods, through a combination of thermal storage and a supplemental natural gas heat source. The powerplant utilized the organic Ranking cycle (ORC) to allow for relatively low source temperatures from the solar collector array. A computer simulation model was developed to determine the performance of the system year-round using the utilizability-solar fraction method. The ORC powerplant uses R245fa as the working fluid and operates at an overall efficiency of 11.1%. The collector is a non-concentrating evacuated tube type and operates at a temperature of 90°C with an average annual efficiency of 23.9%. The system is capable of achieving annual solar fractions of 0.686 to 0.874 with collector array areas ranging from 30 000 to 40 000 m2 and storage tank sizes ranging from 3.8 to 10 × 106L respectively. The lowest possible cost of producing electricity from the system is $0.393 CAD/kWh. The results of the study suggest that small-scale solar thermal plants are physically viable for year round operation in Ontario. The proposed system may be economically feasible given Ontario’s fixed purchase price of $0.42 CAD/kWh, but the cost of producing electricity from the system is highly dependent on the price of the solar collector.


Author(s):  
Nelson Fumo ◽  
Louay M. Chamra ◽  
Vicente Bortone

Integrated energy systems combine distributed power generation with thermally activated components to use waste heat, improving the overall energy efficiency, and making better use of fuels. Use of solar thermal energy is attractive to improve combined cooling, heating, and power (CCHP) systems performance, particularly during summer time since the cooling load coincides very well with solar energy availability. Limitation of the use of solar systems is mainly related to high first cost and large surface area for solar energy harvesting. Therefore, solar thermal CCHP systems seem to be an alternative to increase the use of solar thermal energy as a means to increase energy systems overall efficiency and reduce greenhouse gases (GHGs) emissions. This study focuses on the use of solar collectors in CCHP systems in order to reduce PEC and emission of CO2 in office buildings. By using a base CCHP system, the energy and economic analysis are presented as the contribution of the solar system from the baseline. For comparison purposes, the analysis is made for the cities of Minneapolis (MN), Chicago (IL), New York (NY), Atlanta (GA), and Fort Worth (TX). Results show that solar thermal CCHP systems can effectively reduce the fuel energy consumption from the boiler. The potential of solar collectors in CCHP systems to reduce PEC and CO2 emission increases with the cooling demand; while the effectiveness of solar collectors to reduce primary energy consumption and CO2 emission, and the ability of the system to pay by itself from fuel savings, decreases with the number of solar collectors.


Author(s):  
TieJun Zhang ◽  
Saleh Mohamed ◽  
Guanqiu Li

A combined thermal power and ejector refrigeration cooling cycle is proposed in this paper to harness low-grade solar energy. It utilizes abundant and low-cost hydrocarbon as the working fluid. Hydrocarbon has been identified as a promising alternative to existing high global-warming-potential refrigerants (i.e., HFC refrigerant R134a) in next-generation refrigeration systems. Several typical alternative refrigerants are evaluated by considering their fundamental thermophysical properties: absolute pressure level, volumetric cooling capacity, surface tension, saturated liquid/vapor density ratio and kinematic viscosity. Comparing with R1234yf, R1234ze and R744 (CO2), hydrocarbon refrigerants, such as R290 (propane) and R601 (pentane), do have inherent advantages for either cooling or power generation purposes in hot climates: lower flow resistance and better heat transfer at higher temperature. Fundamental phase stability and transition issues have been considered in designing pentane vapor ejectors for combined power and cooling cycles operating at high ambient temperature. Thermodynamic analysis has indicated that the proposed solar thermal system can provide an effective way to sustainable energy production in hot and dry climates.


Author(s):  
Huseyin Utku Helvaci ◽  
Zulfiqar Ahmad Khan

Renewable energy technologies and sources have been playing a key role in reducing CO2 emissions and its footprint. Solar energy which is one of the major renewable energy sources can be utilized by means of solar Photovoltaic (PV) or solar collectors. Concentrating solar collectors supply thermal energy from medium to high grade where as non-concentrating collectors (flat plate) delivers low-grade thermal energy. The use of thermofluids with boiling temperatures lower than water, allows the operation of low grade solar thermal systems on an Organic Rankine Cycle (ORC) to generate both mechanical and heat energy. At the same time, the selection of an appropriate thermofluid is an important process and has a significant effect both on the system performance and the environment. Hydrofluoroethers (HFEs) are non-ozone depleting substances and they have relatively low global warming potential (GWP). In this study, a solar ORC is designed and commissioned to use HFE 7000 as a thermofluid. The proposed system consists of a flat-plate solar collector, a vane expander, a condenser and a pump where the collector and the expander are used as the heat source and prime mover of the cycle respectively. The performance of the system is determined through energy analysis. Then, a mathematical model of the cycle is developed to perform the simulations using HFE-7000 at various expander pressure values. Experimental data indicates that the efficiency and the net mechanical work output of the cycle were found to be 3.81% and 135.96 W respectively. The simulation results show that increasing the pressure ratio of the cycle decreased the amount of the heat that is transferred to HFE 7000 in the collector due to the increased heat loss from the collector to the environment. Furthermore, the net output of the system followed a linear augmentation as the pressure ratio of the system increased. In conclusion, both the experimental and theoretical research indicates that HFE 7000 offers a viable alternative to be used efficiently in small scale solar ORCs to generate mechanical and heat energy.


2014 ◽  
Vol 137 (2) ◽  
Author(s):  
TieJun Zhang ◽  
Saleh Mohamed

A combined thermal power and ejector refrigeration cooling cycle is proposed in this paper to harness low-grade solar energy. It explores the possibility of utilizing abundant and low-cost hydrocarbon as the working fluid. Hydrocarbon fluid has been identified as a promising alternative to existing high global-warming-potential (GWP) refrigerants (i.e., HFCs) in next-generation cooling and organic thermal power systems. Several typical alternative refrigerants are evaluated by considering their fundamental thermophysical properties: absolute pressure level, volumetric cooling capacity, surface tension, saturated liquid/vapor density ratio, and kinematic viscosity. Comparing with R1234yf, R1234ze, and R744 (CO2), hydrocarbon refrigerants, such as R290 (propane) and R601 (pentane), do have inherent advantages for either cooling or power generation purposes in hot climates. Fundamental phase stability and transition issues have been considered in designing hydrocarbon ejectors for combined power and cooling cycles operating at high ambient temperature. Thermodynamic energy and exergy analysis has indicated that the proposed stand-alone solar thermal system offers an effective way to sustainable energy production in hot and dry climates.


Author(s):  
Hongguang Jin ◽  
Hui Hong ◽  
Jun Ji ◽  
Zhifeng Wang ◽  
Ruixian Cai

In this paper, we have proposed a novel solar–driven combined cycle with solar upgrading of methanol in middle temperature solar collectors, and investigated the effects of integration of solar thermal energy and methanol decomposition on the performance of the proposed cycle. The process of solar upgrading methanol is a catalytically endothermic decomposition reaction and proceeds in a range of 130–250° C. As a result, the proposed cycle has a breakthrough performance, with net solar–to–electric efficiency of 32.93% at the collector temperature of 220° C, and the turbine inlet temperature of 1062° C, superior to that of the present advanced cycle (REFOS of 20%). The exergy loss in indirect combustion of methanol proposed here is 7.5 percent points lower than that of the direct combustion. The optimum pressure ratio for thermal efficiency is approximately equal to 14. A key point emphasized here is that the proposed new cycle can utilize middle–temperature solar collector with lower cost. The promising results obtained here indicated that this novel solar–driven combined cycle could make a breakthrough in field of solar thermal power generation through integration of solar thermal energy and effective use of synthetic clean fuel.


Author(s):  
E. Ogbonnaya ◽  
L. Weiss

Increasing focus on alternative energy sources has produced significant progress across a wide variety of research areas. One particular area of interest has been solar energy. This has been true on both large and small-scale applications. Research in this paper presents investigations into a small-scale solar thermal collector. This approach is divergent from traditional micro solar photovoltaic devices, relying on transforming incoming solar energy to heat for use by devices like thermoelectrics. The Solar Thermal Collector (STC) is constructed using a copper collector plate with electroplated tin-nickel selective coating atop the collector surface. Further, a unique top piece is added to trap thermal energy and reduce convective, conductive, and radiative losses to the surrounding environment. Results show a capture efficiency of 92% for a collector plate alone when exposed to a 1000 W/m2 simulated solar source. The addition of the top “glazing” piece improves capture efficiency to 97%. Future work will integrate these unique devices with thermoelectric generators for electric power production. This will yield a fully autonomous system, capable of powering small sensors or other devices in remote locations or supplementing existing devices with renewable energy.


Sign in / Sign up

Export Citation Format

Share Document