scholarly journals Design and Implementation of a Wireless Charging-Based Cardiac Monitoring System Focused on Temperature Reduction and Robust Power Transfer Efficiency

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 1008
Author(s):  
Dongwook Kim ◽  
Dawon Jeong ◽  
Jongwook Kim ◽  
Haerim Kim ◽  
Junho Kim ◽  
...  

Wireless power transfer systems are increasingly used as a means of charging implantable medical devices. However, the heat or thermal radiation from the wireless power transfer system can be harmful to biological tissue. In this research, we designed and implemented a wireless power transfer system-based implantable medical device with low thermal radiation, achieving 44.5% coil-to-coil efficiency. To suppress thermal radiation from the transmitting coil during charging, we minimized the ESR value of the transmitting coil. To increase power transfer efficiency, a ferrite film was applied on the receiving part. Based on analyses, we fabricated a cardiac monitoring system with dimensions of 17 × 24 × 8 mm3 and implanted it in a rat. We confirmed that the temperature of the wireless charging device increased by only 2 °C during the 70 min charging, which makes it safe enough to use as an implantable medical device charging system.

2016 ◽  
Vol 3 (1) ◽  
pp. 9-14
Author(s):  
Nurcan Keskin ◽  
Huaping Liu

Power transfer efficiency in loosely coupled inductive systems can be enhanced by resonance. Primary and secondary can be tuned to same resonant frequency. In this paper, MOSFET-based Varactors and switchable capacitors are used for re-tuning of such a system at 13.56 MHz. This is achieved either using each cap structure alone or as a hybrid model. These techniques are designed for 13.56 MHz wireless power transfer system.


A typical magnetic resonance based wireless power transfer (WPT) system comprises a transmitter coil and an embedded receiver coil used for wireless charging of the electrical and electronics devices. It has been investigated that the coil structure influence the power transfer efficiency of the wireless charging system .The investigations have been carried out in order to determine a suitable coil type and geometry so as to achieve higher efficiency of a wireless power transfer system. The present investigation will afford the design strategy for an efficient wireless charging system .


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5298
Author(s):  
Manuele Bertoluzzo ◽  
Stefano Giacomuzzi ◽  
Elisabetta Sieni

This paper addresses the optimization of the compensation networks of a wireless power transfer system. Optimization is performed by means of a genetic algorithm that looks for the reactances of the elements of the compensation networks that maximize the power transfer efficiency and the power transferred to the load. In addition, the algorithm selects the solutions that are less sensitive to the difference between the theoretical and actual reactances. The last part of the paper describes the prototypal setup used for the tests and supports the theoretical findings by reporting experimental results.


Sign in / Sign up

Export Citation Format

Share Document