scholarly journals In-Stream Tidal Energy Resources in Macrotidal Non-Cohesive Sediment Environments: Effect of Morphodynamic Changes at Two Bays in the Upper Gulf of California

2021 ◽  
Vol 9 (4) ◽  
pp. 411
Author(s):  
Anahí Bermúdez-Romero ◽  
Vanesa Magar ◽  
Markus S. Gross ◽  
Victor M. Godínez ◽  
Manuel López-Mariscal ◽  
...  

Because of the need to diversify the renewable energy matrix and because hydrokinetic tidal energy technologies are mature, many in-stream tidal energy resource studies are available globally. Still, there are many questions regarding the effect of seabed changes on tidal energy resources. For coastal regions in particular, where the seabed is generally more mobile than in deep waters, bathymetric evolution could significantly affect tidal energy production. Here, two models are used to analyse the potential effect of natural morphodynamic change on tidal energy resources at two macro-tidal sandy bays, Adaír Bay and San Jorge Bay, in the Upper Gulf of California, Mexico. One of the models is (purely) hydrodynamic, and the other is a morphodynamic model (with hydrodynamic–morphodynamic coupling). The models are validated against tidal current observations obtained with acoustic Doppler current profilers in the region of interest, using three different error statistics, which showed good agreement between models and observations. The results also showed that the most significant bed changes and the largest renewable energy resources are located near the shore. Moreover, there was a good correlation between (a) regions with the most significant depth changes and (b) the areas where the difference in annual energy production with and without depth change was largest. Finally, a two-year simulation with the morphodynamic model permitted to analyse the seabed evolution of a zonal profile off Punta Choya, the headland between the two bays. This profile evolved towards a featureless equilibrium, as expected from the morphological classification for macro-tidal sandy environments under a dominant tidal forcing. However, most importantly, this natural evolution would not be detrimental to tidal energy exploitation at the site.

Author(s):  
Anahí Bermúdez-Romero ◽  
Vanesa Magar ◽  
Markus S. Gross ◽  
Victor M. Godínez ◽  
Manuel López-Mariscal ◽  
...  

While many in-steam tidal energy resource studies have been carried out globally, very few studies have assessed the effect of seabed changes on tidal energy resources. For coastal regions in particular, where the seabed is generally more mobile than in deep waters, bathymetric evolution could have a significant effect on tidal energy production. Here two high-resolution models, one purely hydrodynamic and one morphodynamic, are used to analyse the potential effect of natural morphodynamic evolution on tidal energy resources at two macro-tidal sandy bays, Adaír Bay and San Jorge Bay, in the Upper Gulf of California, Mexico. The high-resolution models are validated using a low-resolution model and ADCP observations to assess the agreement between model predictions and observations of tides at three ADCP moorings within the domain of interest. The models’ skill is evaluated using several error statistics such as the mean relative error, the root mean square error (RMSE), and the correlation coefficient. It was found that the regions with the largest bed changes, and also the largest renewable energy resources, were near the shore. Moreover, the results indicated a good correlation between a) regions with the most significant depth changes, and b) the regions where the difference in annual energy production with and without depth change was largest. Finally, the morphodynamic model was run for two years, and the evolution of a zonal profile (in the west-east direction) off the coast at the southeastern corner of Adaír Bay was inspected. This profile evolved towards a featureless equilibrium profile, in good agreement with the morphological classification for macro-tidal sandy environments and with the model assumptions. But most importantly, this natural evolution would not be detrimental to tidal energy exploitation at the site.


2021 ◽  
Vol 4 (2) ◽  
pp. 125-130
Author(s):  
Muhammad Azhar Mahmood ◽  
Muhammad Kamran Liaqat Bhatti ◽  
S. Raza ◽  
M. Riaz

Most of the industries including the oil sector are looking forward towards the renewable energy resources with proper energy management system (EMS) as it is the need of time. For this purpose, solar and wind energy are the renewable energy resources, which are obtained from natural resources and produce clean and environment -friendly electrical energy and can be used for oil depots. The proper utilization of solar and wind energy from natural resource may result in economical and cost-effective EMS. In the proposed research work, an effective energy management demonstration is delivered to ensure the ceaseless flexibility of power. Furthermore, reduction of production per unit cost to the oil sector industry by utilizing multiple objectives streamlining. In the proposed oil depot, connected loads are divided into Shiftable and Non-Shiftable loads and then apply Branch and Bound Algorithm (BnB) with binary integer linear programming (BILP). By using the BnB technique, selected shiftable loads are shifted to the low cost energy resource automatically and resultantly, we get the low price unit cost and continuous power supply. Simulation results for the above-mentioned research work are performed on MATLAB. The proposed technique helps to reduce the power stack shedding issue as well.


2016 ◽  
Vol 9 (3) ◽  
pp. 56 ◽  
Author(s):  
Mohammed Ebrahim Hussien ◽  
Chamhuri Siwar ◽  
Rashidah Zainal Alam ◽  
Abdul Hamid Jafar ◽  
Norasikin Ahmad Ludin

<p>Since conventional energy resources are major source of CO<sub>2</sub> emission, over reliance on fossil fuels has raised questions on environmental sustainability. On way to address these multi-faceted issues of conventional energy sources, the sustainability of energy and environment is through the green economy approach. As such, this paper aims to discuss the concept of green economy in relation with renewable energy. The interdependence of green economy and environmental quality as well as the compatibility of green economy approach with the notion of sustainable development are demonstrated in the paper. Green economy approach fulfils the methodological gaps that exist in the growth models. It is believed that the best economic tool to attain sustainable development goals is by integrating social, economic and environmental elements. Furthermore, energy is believed to be a significant player in determining the greenness of the economy and sustainability as it has economic and environmental value. In addition, this study illustrates the significance of biomass energy resource and CO<sub>2</sub> emissions from fossil fuel combustion. The illustration framework justifies that biomass is the determinant renewable energy source to be a proxy for renewable energy resources. Similarly, it justifies that CO<sub>2</sub> emission of energy sector is considerably significant to represent the CO<sub>2</sub> emissions of the atmosphere.</p>


Author(s):  
Joseph G. Jacangelo ◽  
Joan A. Oppenheimer ◽  
Arun Subramani ◽  
Mohammad Badruzzman

Energy is often the most significant factor in the affordability and sustainability of treating various different source waters with reverse osmosis membrane facilities. More than 33% of the cost to produce water using reverse osmosis (RO) technology is attributed to electrical demands. The largest energy-consuming component of the overall treatment are the high pressure pumps required to feed water to the process. Because of the high energy burden and production of greenhouse gas (GHG) emissions, renewable energy is being increasingly considered for desalination projects. The selection of the appropriate renewable energy resource depends on several factors, including plant size, feed water salinity, remoteness, availability of grid electricity, technical infrastructure, and the type and potential of the local renewable energy resource. The cost of desalination with renewable energy resources, as opposed to desalination with conventional energy sources, can be an important alternative to consider when reduced environmental impact and lower gas emissions are required. Considering the proposed climate protection targets that have been set and the strong environmental drivers for lowered energy usage, future water desalination and advanced water treatment systems around the world could be increasingly powered by renewable energy resources. In addition to renewables, energy optimization/minimization is deemed critical to desalting resource management. Methods employed include enhanced system design, high efficiency pumping, energy recovery devices and use of advanced membrane materials.


Author(s):  
Tomoki Taniguchi ◽  
Shigesuke Ishida ◽  
Yoshimasa Minami

This paper addressed assessing feasibility of hybrid use of ocean renewable energy, such as wave and wind energy around Japanese coast. At first, wave and wind energy theoretical potentials were calculated and, in the second step, correlation coefficient between wave and wind energy was computed around Japanese coast. Sea area suitable for hybrid use of ocean renewable energy resources is supposed to have high potential for some types of energy resources. Furthermore, correlation of power generation between wave and wind energy resources should be low because one energy resource needs to complement another one for stabilizing power generation. Based on the assumptions, feasibility of wind and wave energy was evaluated on some sea areas where R&D project are ongoing.


2018 ◽  
Vol 8 (10) ◽  
pp. 1733
Author(s):  
Eunil Park ◽  
Angel del Pobil

Since the importance and effects of national energy policies, plans, and roadmaps were presented in South Korea, the role of renewable energy resources has received great attention. Moreover, as there is significant reasoning for reducing and minimizing nuclear and fossil fuel usage in South Korean national energy plans, several academic scholars and implementers have expended significant effort to present the potential and feasibility of renewable energy resources in South Korea. This study contributes to these efforts by presenting potential sustainable configurations of renewable energy production facilities for a public building in South Korea. Based on economic, environmental, and technical information as well as the presented simulation results, it proposes an environmentally friendly renewable energy production facility configuration that consists of photovoltaic arrays, battery units, and a converter. Subsidies for installing and renovating such facilities are also considered. The potential configuration indicates $0.464 as the cost of energy, 100% of which is renewable. Potential limitations and future research areas are suggested based on the results of these simulations.


Resources ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 149 ◽  
Author(s):  
Avtar ◽  
Sahu ◽  
Aggarwal ◽  
Chakraborty ◽  
Kharrazi ◽  
...  

Renewable energy has received noteworthy attention during the last few decades. This is partly due to the fact that fossil fuels are depleting and the need for energy is soaring because of the growing population of the world. This paper attempts to provide an idea of what is being done by researchers in remote sensing and geographical information system (GIS) field for exploring the renewable energy resources in order to get to a more sustainable future. Several studies related to renewable energy resources viz. geothermal energy, wind energy, hydropower, biomass, and solar energy, have been considered in this paper. The focus of this review paper is on exploring how remote sensing and GIS-based techniques have been beneficial in exploring optimal locations for renewable energy resources. Several case studies from different parts of the world which use such techniques in exploring renewable energy resource sites of different kinds have also been included in this paper. Though each of the remote sensing and GIS techniques used for exploration of renewable energy resources seems to efficiently sell itself in being the most effective among others, it is important to keep in mind that in actuality, a combination of different techniques is more efficient for the task. Throughout the paper, many issues relating to the use of remote sensing and GIS for renewable energy are examined from both current and future perspectives and potential solutions are suggested. The authors believe that the conclusions and recommendations drawn from the case studies and the literature reviewed in the present study will be valuable to renewable energy scientists and policymakers.


Resources ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 7 ◽  
Author(s):  
Mohammed Sait ◽  
Uchendu Chigbu ◽  
Iqbal Hamiduddin ◽  
Walter de Vries

Renewable energy remains an underutilised resource within urban environments. This study examines the ongoing German Energiewende (energy transition) as an example of renewable energy being treated as a necessary resource for urban development. It departs from existing literature by operationalising the Advocacy Coalition Framework (ACF), taking a policy systems approach to analyse (and explain) the cases of three German cities—Munich, Berlin, and Freiburg. This approach helps draw lessons for future UK energy scenarios by placing more abstract conceptions of Sustainable Energy Transitions (SETs) within the context of UK cities, post-Brexit. By discussing five main themes: the shift from government to governance; the need to break ‘carbon lock-in’; renewable energy innovation as an underutilised resource; developing governance strategies for renewable energy resources; the shift from policy to practice, the study yields a detailed reconceptualisation of approaches to renewable energy resource-use policy. The novelty of this study lies in its response to these challenges, taking a policy systems approach to energy governance. The article concludes with a proposed integrated framework. The framework, which is based on multi-scalar and multi-stakeholder integrated energy governance strategy, reconsiders the way in which renewable energy resources are seen in current governance terms in the UK. The framework presents a new approach to renewable energy resource-use policy that embraces innovation, responsible governance, and inclusive processes, (alongside thinking beyond simply technical solutions) to considering the socio-economic impacts of policy decisions in cities.


2018 ◽  
Vol 81 ◽  
pp. 2992-3005 ◽  
Author(s):  
Danial Khojasteh ◽  
Davood Khojasteh ◽  
Reza Kamali ◽  
Asfaw Beyene ◽  
Gregorio Iglesias

2022 ◽  
Vol 1048 ◽  
pp. 445-450
Author(s):  
Dewi Selvia Fardhyanti ◽  
Sri Kadarwati ◽  
Heni Dewajani ◽  
Achmad Rosadi ◽  
Wengki Muhammad Alfriansyah

An exploration on renewable energy resources has been paid more attention due to the depletion of the fossil-based energy resource. In addition, their safe and environmentally friendly properties have attracted experts’ interest. One of the renewable energy resources is the bio-oil produced from sugarcane bagasse. The bio-oil was produced through a pyrolysis at 500°C. However, the produced bio-oil showed a high content of phenolics, c.a. 40-60%. A liquid-liquid extraction to remove the phenolics using methanol-chloroform solvents would be beneficial to improve the stability of the bio-oil as well as to obtain high purity phenolics. Modelling of the liquid-liquid equilibria in the extraction was then developed using NRTL and UNIFAC equations. The empirical quantitative data of phase equilibrium system were calculated on both the extract and raffinate phases. The lowest RMSD value of 0.043160 was obtained from the calculations using NRTL equation at an extraction temperature of 50°C. Thus, the most suitable model was achieved using NRTL equation.


Sign in / Sign up

Export Citation Format

Share Document