scholarly journals Ensemble Gradient Boosted Tree for SoH Estimation Based on Diagnostic Features

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1262 ◽  
Author(s):  
Sahar Khaleghi ◽  
Yousef Firouz ◽  
Maitane Berecibar ◽  
Joeri Van Mierlo ◽  
Peter Van Den Bossche

The success of electric vehicles (EVs) depends principally on their energy storage system. Lithium-ion batteries currently feature the ideal properties to fulfil the wide range of prerequisites specific to electric vehicles. Meanwhile, the precise estimation of batteries’ state of health (SoH) should be available to provide the optimal performance of EVs. This study attempts to propose a precise, real-time method to estimate lithium-ion state of health when it operates in a realistic driving condition in the presence of dynamic stress factors. To this end, a real-life driving profile was simulated based on highly dynamic worldwide harmonized light vehicle test cycle load profiles. Afterward, various features will be extracted from voltage data and they will be scored based on prognostic metrics to select diagnostic features which can conveniently identify battery degradation. Lastly, an ensemble learning model was developed to capture the correlation of diagnostic features and battery’s state of health (SoH). The result illustrates that the proposed method has the potential to estimate the SoH of battery cells aged under a distinct depth of discharge and current profile with a maximum error of 1%. This confirms the robustness of the developed approach. The proposed method has the capability of implementing in battery management systems due to many reasons; firstly, it is tested and validated based on the data which are equal to the real-life driving operation of an electric vehicle. Secondly, it has high accuracy and precision, and a low computational cost. Finally, it can estimate the SoH of battery cells with different aging patterns.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 71
Author(s):  
Seyed Saeed Madani ◽  
Erik Schaltz ◽  
Søren Knudsen Kær

Lithium-ion batteries are being implemented in different large-scale applications, including aerospace and electric vehicles. For these utilizations, it is essential to improve battery cells with a great life cycle because a battery substitute is costly. For their implementation in real applications, lithium-ion battery cells undergo extension during the course of discharging and charging. To avoid disconnection among battery pack ingredients and deformity during cycling, compacting force is exerted to battery packs in electric vehicles. This research used a mechanical design feature that can address these issues. This investigation exhibits a comprehensive description of the experimental setup that can be used for battery testing under pressure to consider lithium-ion batteries’ safety, which could be employed in electrified transportation. Besides, this investigation strives to demonstrate how exterior force affects a lithium-ion battery cell’s performance and behavior corresponding to static exterior force by monitoring the applied pressure at the dissimilar state of charge. Electrochemical impedance spectroscopy was used as the primary technique for this research. It was concluded that the profiles of the achieved spectrums from the experiments seem entirely dissimilar in comparison with the cases without external pressure. By employing electrochemical impedance spectroscopy, it was noticed that the pure ohmic resistance, which is related to ion transport resistance of the separator, could substantially result in the corresponding resistance increase.





Author(s):  
S. Shawn Lee ◽  
Tae H. Kim ◽  
S. Jack Hu ◽  
Wayne W. Cai ◽  
Jeffrey A. Abell

Automotive battery packs for electric vehicles (EV), hybrid electric vehicles (HEV), and plug-in hybrid electric vehicles (PHEV) typically consist of a large number of battery cells. These cells must be assembled together with robust mechanical and electrical joints. Joining of battery cells presents several challenges such as welding of highly conductive and dissimilar materials, multiple sheets joining, and varying material thickness combinations. In addition, different cell types and pack configurations have implications for battery joining methods. This paper provides a comprehensive review of joining technologies and processes for automotive lithium-ion battery manufacturing. It details the advantages and disadvantages of the joining technologies as related to battery manufacturing, including resistance welding, laser welding, ultrasonic welding and mechanical joining, and discusses corresponding manufacturing issues. Joining processes for electrode-to-tab, tab-to-tab (tab-to-bus bar), and module-to-module assembly are discussed with respect to cell types and pack configuration.



2012 ◽  
Vol 129 (3) ◽  
pp. 167-173 ◽  
Author(s):  
M. Einhorn ◽  
W. Rößler ◽  
F. V. Conte ◽  
H. Popp ◽  
J. Fleig










2019 ◽  
Vol 41 (32) ◽  
pp. 1-11
Author(s):  
Verena Klass ◽  
Maårten Behm ◽  
Göran Lindbergh


Sign in / Sign up

Export Citation Format

Share Document