scholarly journals The Application of Molten Salt Energy Storage to Advance the Transition from Coal to Green Energy Power Systems

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2222 ◽  
Author(s):  
Wojciech Kosman ◽  
Andrzej Rusin

The paper presents technical solutions for a power grid that undergoes the elimination of a significant number of coal-based power generating units. The purpose of the solutions is to adapt the existing machines with sufficient lifespans to the new operating conditions. In particular these include steam turbines. The steam turbines’ cycles may be extended with energy storage systems based on a molten salt. This allows to increase the flexibility of the power generating units while maintaining the largest possible efficiency of the power generation. The solutions presented here allow to connect the steam turbines cycles to renewable energy sources and reduce the overall number of the units that create the fundamental layer of the power grid. The analysis of the solutions involves numerical modeling. The paper describes the assumptions and the results of the modeling for chosen cases of the modernization. The researched considered a number of options that differed in the investment costs and the resulting performance.

Author(s):  
Sergiy Korinnyi ◽  
Mariia Mikhailutsa ◽  
Anastasiia Bondarenko

The article examines a set of issues related to "green energy" in the world, problems and opportunities from the introduction of alternative energy sources for greening the economy, developing sustainable economy and preserving human potential. Analytical works of some Ukrainian authors have been studied, in which the current state, obstacles to the realization and prospects of "green energy" in the world have been determined. The purpose of the article is to refute the allegations about the need to immediately stop the introduction of "green technologies", including the construction of solar stations. There are two opposing views on the need for green energy, which have been being discussed around the world for the past few decades. The most popular evidence from both sides on this issue is given, in particular, that the planet can be saved only through the active use of renewable energy sources, and on the other hand, that "green energy" at the current level of human development will cause even more environmental and economic problems. The arguments most often expressed by opponents of the active introduction of "green energy" are highlighted, namely: the high cost of new technologies compared to existing types of generation; the inability of "green energy" to solve the problem of warming on the planet with reference to scientific research on the amount of CO2 emissions from different types of generation as a major factor in warming; danger to the energy systems of all countries of the world due to the instability of energy production by natural factors. Counter-arguments on these issues are provided and evidence of the ability and necessity to use clean technologies is provided. The problem, on which the opinions of both parties coincide, is highlighted - the reluctance of "green" investors to spend money on storage systems, energy storage and stabilization of energy systems due to their high cost, size, insufficient energy consumption and insufficient duration of work. It is noted that the issue of developing the latest energy storage and stabilization systems and their installation at new and existing RES stations needs to be addressed immediately, but is not an obstacle to the further development of green energy.


Author(s):  
Z. Islifo

The existing electric power grid is reliable enough to meet everyday needs of U.S. electricity users. However, the grid needs major infrastructure upgrades to meet the rising demands for a reliable, resilient, and secure electricity delivery. Drivers to modernize the grid include increased demand for clean sources of energy, growing number of renewable energy sources on the grid and customer participation in power generation. Smart grid technologies are critical for monitoring, managing and controlling the power grid. Energy storage introduces an important new dimension on the grid, the ability to store electricity at one time and release the stored electricity for use at another time. Flow batteries are one type of energy storage technologies that are well suited for large-scale utility application on the grid. Currently, vanadium redox ow batteries are the most common used utility-scaled ow batteries.


Author(s):  
Reza Baghaei Lakeh ◽  
Karthik Nithyanandam ◽  
Amey Barde ◽  
Louis Tse ◽  
Richard E. Wirz

Most of the renewable energy sources, including solar and wind suffer from significant intermittency due to day/night cycles and unpredictable weather patterns. On the other hand increasing share of renewable sources imposes additional stability risks on the power grid. Increased share of solar energy in power generation during noon along with increased power demand during afternoon peak hours generates a significant risk on the stability of power grid. Energy Storage systems are required to enable the renewable energy sources to continuously generate energy for the power grid and enhance the stability of future grid that benefits from more renewable sources. Thermal Energy Storage (TES) is one of the most promising forms of energy storage. Although round trip efficiency is relatively high in thermal storage systems, heat transfer is a well-known problem of most TES systems that use solid state or phase change. Insufficient heat transfer may significantly impact the performance of the TES system. The TES system of this study utilizes molten sulfur as the storage medium. Although thermal conductivity of molten sulfur is relatively low, the sulfur-based TES system benefits from enhanced heat transfer due to the presence of buoyancy-driven flows. In this study, the effect of natural convection on the heat transfer characteristics of a sulfur-based isochoric TES system is studied computationally and theoretically. It turns out that the viscosity of sulfur in the temperature range of this study (250–400 °C) varies by two orders of magnitude. A computational model was developed to investigate the effect of viscosity variations on the buoyancy-driven flow and corresponding charge and discharge times. The computational model is developed using an unsteady Finite Volume Method by a commercially available CFD package. The results of this study show that the heat transfer process in the isochoric TES element is highly impacted by natural convection. The viscous flow of molten sulfur near the boundaries of the isochoric TES element leads to different charge and discharge times. The discharge time is almost two times longer than the charge time due to formation of a viscous layer of elemental sulfur near the heat transfer surface. The viscous layer of sulfur decreases the activity of the buoyancy-driven flow and decreases the heat transfer rate during discharge cycle. The computational model was validated by comparing the results of a representative case with experimental data.


Author(s):  
Reza Baghaei Lakeh ◽  
Ian C. Villazana ◽  
Sammy Houssainy ◽  
Kevin R. Anderson ◽  
H. Pirouz Kavehpour

The share of renewable energy sources in the power grid is showing an increasing trend world-wide. Most of the renewable energy sources are intermittent and have generation peaks that do not correlate with peak demand. The stability of the power grid is highly dependent on the balance between power generation and demand. Compressed Air Energy Storage (CAES) systems have been utilized to receive and store the electrical energy from the grid during off-peak hours and play the role of an auxiliary power plant during peak hours. Using Thermal Energy Storage (TES) systems with CAES technology is shown to increase the efficiency and reduce the cost of generated power. In this study, a modular solid-based TES system is designed to store thermal energy converted from grid power. The TES system stores the energy in the form of internal energy of the storage medium up to 900 K. A three-dimensional computational study using commercial software (ANSYS Fluent) was completed to test the performance of the modular design of the TES. It was shown that solid-state TES, using conventional concrete and an array of circular fins with embedded heaters, can be used for storing heat for a high temperature hybrid CAES (HTH-CAES) system.


2018 ◽  
Vol 58 ◽  
pp. 01012 ◽  
Author(s):  
Dmitry Krupenev

The paper deals with the problem of the accounting of renewable energy sources and energy storage systems in assessment of power system adequacy. Development of renewable energy sources and energy storage systems in the present day power systems is one of the main focuses. In power systems of some countries the share of electric energy generated by renewable energy sources is above 50 % in the energy balance. Therefore, the plans on development of the present day power systems must be elaborated with the proper accounting of operation of renewable energy sources and energy storage systems and the sound capacity reserves in terms of these facilities. The paper presents the algorithms for the accounting of renewable energy sources and energy storage systems. The experimental studies performed illustrate feasibility of the suggested algorithms.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2112 ◽  
Author(s):  
Jaber Alshehri ◽  
Muhammad Khalid ◽  
Ahmed Alzahrani

Modern power systems rely on renewable energy sources and distributed generation systems more than ever before; the combination of those two along with advanced energy storage systems contributed widely to the development of microgrids (MGs). One of the significant technical challenges in MG applications is to improve the power quality of the system subjected to unknown disturbances. Hence innovative control strategies are vital to cope with the problem. In this paper, an innovative online intelligent energy storage-based controller is proposed to improve the power quality of a MG system; in particular, voltage and frequency regulation at steady state conditions are targeted. The MG system under consideration in this paper consists of two distributed generators, a diesel synchronous generator, and a photovoltaic power system integrated with a battery energy storage system. The proposed control approach is based on hybrid differential evolution optimization (DEO) and artificial neural networks (ANNs). The controller parameters have been optimized under several operating conditions. The obtained input and output patterns are consequently used to train the ANNs in order to perform an online tuning for the controller parameters. Finally, the proposed DEO-ANN methodology has been evaluated under random disturbances, and its performance is compared with a benchmark controller.


Sign in / Sign up

Export Citation Format

Share Document