scholarly journals Configuration Synthesis of Novel Hybrid Transmission Systems Using a Combination of a Ravigneaux Gear Train and a Simple Planetary Gear Train

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2333 ◽  
Author(s):  
Thanh-Tho Ho ◽  
Sheng-Jye Hwang

Thirty-two novel hybrid transmissions consisting of a Ravigneaux gear train and a single planetary gear train are synthesized using a creative design methodology based on graph-theory and the lever analogy method. The design process commences by identifying an existing transmission configuration which meets all of the design requirements. The chosen design is then used to synthesize all possible mechanism permutations which satisfy the design constraints. The feasible mechanisms which satisfy both the design requirements and the design constraints are converted into analogous levers. The levers which fail to provide the required operation modes of the hybrid transmission are eliminated and the remaining levers are assigned brakes and clutches in order to realize the final designs. The responsiveness of the new hybrid transmissions and the feasibility of the proposed design methodology are confirmed by analyzing the power flow and kinematics of one of the designs in all of the operation modes.

2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Huu-Tich Ngo ◽  
Hong-Sen Yan

This paper presents a design approach to systematically synthesize feasible configurations for series–parallel and parallel hybrid transmissions subject to design constraints and required operation modes using a simple planetary gear train (PGT). The configuration synthesis process includes two main steps: (1) assign inputs and output powers to the PGT subject to design constraints by the power arrangement process and (2) assign clutches and brakes to the obtained systems subject to desired operation modes by the clutch arrangement process. By applying the proposed design approach, 9 clutchless and 31 clutched configurations for series–parallel and parallel hybrid transmission systems are synthesized, respectively. For each type of the hybrid systems, we analyzed kinematics and power flows of a new configuration to demonstrate the feasibility of the synthesized systems. The design approach can be used to systematically synthesize future hybrid transmissions with different mechanisms, design constraints, and desired operation modes.


Author(s):  
Huu-Tich Ngo ◽  
Hong-Sen Yan

This paper presents a design approach to systematically synthesize feasible configurations for series-parallel and parallel hybrid transmissions subject to design constraints and required operation modes using a simple planetary gear train (PGT). The configuration synthesis process includes two main steps: 1) assign inputs and output powers to the PGT subject to power constraints by the power arrangement process; and 2) assign clutches and brakes to the obtained systems subject to desired operation modes by the clutch arrangement process. By applying the proposed design approach, nine clutchless and 31 clutched configurations for series-parallel and parallel hybrid systems are synthesized, respectively. For each type of the hybrid systems, we analyzed kinematic and power flow of a new configuration to demonstrate the feasibility of the synthesized systems. The design approach can be used to systematically synthesize future hybrid transmissions with different mechanisms, design constraints, and desired operation modes.


2015 ◽  
Vol 39 (3) ◽  
pp. 431-441 ◽  
Author(s):  
Yi-Chang Wu ◽  
Tze-Cheng Wu

This paper presents embodiment design of 5-speed rear drive hubs for bicycles. A 7-link, 2-degrees of freedom (DOF) compound planetary gear train as the main body of a rear drive hub is introduced. The relationship between the number of coaxial links of a planetary gear train and the number of gear stages that a drive hub can provide with is discussed. By means of kinematic analysis, four speed ratios of the planetary gear train are derived, which represents four forward gears of the rear drive hub. By adding a direct-drive gear, five forward gears can be provided and two feasible clutching sequence tables are synthesized. Manual translational-type gear-shifting mechanisms are further designed to incorporate with the planetary gear train for appropriately controlling the gear stage. The power-flow path at each gear stage is checked to verify the feasibility of the proposed design. Finally, two novel 5-speed bicycle rear drive hubs are presented.


2013 ◽  
Vol 37 (3) ◽  
pp. 741-753 ◽  
Author(s):  
Long-Chang Hsieh ◽  
Hsiu-Chen Tang

Due to the reason of pollution-free, electric motorcycle become more and more popular in city traffic. The purpose of this work is to propose a design methodology for the invention of planetary gear automatic transmissions for electric motorcycles. First, applying the check list method (combining and extending methods), the design concepts are proposed. Then, based on the train value equation of planetary gear train, we derive reduction-ratio equations of these planetary gear automatic transmissions. In this paper, five new design concepts including three 3-speed and two 4-speed are synthesized. Three examples of the kinematic design of planetary gear automatic transmissions are accomplished to illustrate the design methodology.


2012 ◽  
Vol 232 ◽  
pp. 955-960 ◽  
Author(s):  
Long Chang Hsieh ◽  
Hsiu Chen Tang

Recently, bicycles are used as exercising machines and traffic vehicles. Planetary gear trains can be used as the transmission systems with multi-speed for bicycles. The purpose of this work is to propose a design methodology for the design of eight-speed internal gear hubs with planetary gear trains for bicycles. First, we propose a design concept for the design of eight-speed planetary gear hub. Then, based on this design concept and train value equation of planetary gear train, the kinematic design of eight-speed planetary gear hub is accomplished. One eight-speed planetary gear hub is synthesized to illustrate the design methodology. Based on the proposed design methodology, many eight-speed internal gear hubs with planetary gear trains can be synthesized.


Author(s):  
W K Shi ◽  
L J Li ◽  
D T Qin ◽  
T C Lim

A novel compound epicyclic gearing that combines a planetary gear train with a differential gear train is designed for an electrical propulsion system of underwater unmanned vehicles. This epicyclic gearing can transform a single input into two counter-rotating outputs with equal torque amplitudes and speeds. Based on the analysis method of power flow in the differential gear train, the character of the power flow of the compound epicyclic gearing was determined. After comparing with the power distribution of input flow, the condition of this mechanism without power recirculation was investigated. Because the reactive torque of the motor stator is balanced by the torque on ring gear of planetary gear train, no net torque acts on the vessel being propelled.


Author(s):  
Guan-Huei Wu ◽  
Hong-Sen Yan

This work presents the modeling and computer simulation of a novel hybrid transmission with a mechanical reverse driving mode, including an engine, a motor, a simple planetary gear train, and a Ravigneaux planetary gear train. Based on the given teeth number, the reduction ratios of all the clutching condition are acquired. The feasibilities of mode shifts among the clutching conditions are analyzed. Then, a modified rule-based control strategy is introduced. Subject to the vehicle condition, speed command, and predicted equivalent fuel consumptions, the most fuel economy clutching condition is selected by the control strategy. And, a computer model is developed using SIMULINK. Two popular driving cycles are applied to the simulation model, and the simulation results of the novel hybrid transmission are competitive with the existing hybrid electric vehicle models.


2012 ◽  
Vol 538-541 ◽  
pp. 997-1001
Author(s):  
Yun Jie Wu ◽  
Kai Chang Liu

Kinematic and the direction of the power flow for closed planetary bevel-type CVT are performed. The relationship between partition coefficient of power and power flow in closed system is studied by analyzing closed planetary bevel-type CVT, the expressions between power partition coefficient and the basic speed ratios are established, the necessary conditions with no recirculation of power for closed planetary bevel-type CVT are determined. Sixteen possible interconnections of parallel planetary gear train and planetary bevel-type CVT are obtained. A effective compact analysis processing method for design of closed planetary bevel-type CVT with no recirculation of power is offered.


Author(s):  
Joseph Y. Chen ◽  
James B. Borgerson

A step-by-step computational procedure for estimating planetary gear train efficiency is presented. This technique is especially useful for complex gear train systems, because it does not require re-arranging the power circuit to perform efficiency calculations for different power paths. A hardware test program validating the computation is also documented. The test results correlate well with the analytical model.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Xiangyang Xu ◽  
Hanqiao Sun ◽  
Yanfang Liu ◽  
Peng Dong

This paper presents a novel design approach to systematically synthesize available configurations for dedicated hybrid transmission (DHT) systems subject to design constraints and required operation modes by using simple planetary gear sets (PGSs). The configuration synthesis process includes two main steps. The first step is the synthesis of the PGSs by synthesizing all the components to a simple PGS subject to the design constraints. The second step is to combine the structural and shift elements into all configurations and detect those meeting the requirements with the mechanical and operation mode constraints. By applying the proposed design approach, the configurations of the Toyota’s hybrid systems (THSs) and Voltec-II prove the feasibility of the method. Furthermore, several new DHT configurations are synthesized under the new design conditions. The proposed design approach is capable of systematically synthesizing new DHT systems with multiple PGSs, variable design constraints, and expected modes.


Sign in / Sign up

Export Citation Format

Share Document