scholarly journals Large Scale Spectral Splitting Concentrator Photovoltaic System Based on Double Flat Waveguides

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2360
Author(s):  
Ngoc Hai Vu ◽  
Thanh Tuan Pham ◽  
Seoyong Shin

In this research, we present a novel design for a large scale spectral splitting concentrator photovoltaic system based on double flat waveguides. The sunlight concentrator consists of a Fresnel lens array and double waveguides. Sunlight is firstly concentrated by Fresnel lenses then reaches an upper flat waveguide (UFW). The dichroic mirror-coated prisms are positioned at each focused area to divide the sunlight spectrum into two bands. The mid-energy (mid E) band is reflected at the prism surface and coupled to the UFW. The GaInP/GaAs dual-junction solar cell is attached at the exit port of the UFW to maximize the electrical conversion efficiency of the mid E band. The low-energy (low E) band is transmitted and reaches a bottom flat waveguide (BFW). The mirror coated prisms are utilized to redirect the mid E band sunlight for coupling with the BFW. The GaInAsP/GaInAs dual-junction solar cell is applied to convert the low E band to electricity. The system was modeled using the commercial optic simulation software LightTools™. The results show that the proposed system can achieve optical efficiencies of 84.02% and 80.01% for the mid E band and low E band, respectively, and a 46.1% electrical conversion efficiency for the total system. The simulation of the system performance and comparison with other PV systems prove that our proposed design is a new approach for a highly efficient photovoltaic system.

iScience ◽  
2020 ◽  
Vol 23 (12) ◽  
pp. 101817
Author(s):  
Motoshi Nakamura ◽  
Keishi Tada ◽  
Takumi Kinoshita ◽  
Takeru Bessho ◽  
Chie Nishiyama ◽  
...  

2015 ◽  
Vol 8 (1) ◽  
pp. 106-111 ◽  
Author(s):  
Zilong Wang ◽  
Hua Zhang ◽  
Wei Zhao ◽  
Zhigang Zhou ◽  
Mengxun Chen

Research on automatic tracking solar concentrator photovoltaic systems has gained increasing attention in developing the solar PV technology. A paraboloidal concentrator with secondary optic is developed for a three-junction GaInP/GalnAs/Ge solar cell. The concentration ratio of this system is 200 and the photovoltaic cell is cooled by the heat pipe. A detailed analysis on the temperature coefficient influence factors of triple-junction solar cell under different high concentrations (75X, 100X, 125X, 150X, 175X and 200X) has been conducted based on the dish-style concentration photovoltaic system. The results show that under high concentrated light intensity, the temperature coefficient of Voc of triple-junction solar cell is increasing as the concentration ratio increases, from -10.84 mV/°C @ 75X growth to -4.73mV/°C @ 200X. At low concentration, the temperature coefficient of Voc increases rapidly, and then increases slowly as the concentration ratio increases. The temperature dependence of η increased from -0.346%/°C @ 75X growth to - 0.103%/°C @ 200X and the temperature dependence of Pmm and FF increased from -0.125 W/°C, -0.35%/°C @ 75X growth to -0.048W/°C, -0.076%/°C @ 200X respectively. It indicated that the temperature coefficient of three-junction GaInP/GalnAs/Ge solar cell is better than that of crystalline silicon cell array under concentrating light intensity.


1994 ◽  
Vol 336 ◽  
Author(s):  
A. Terakawa ◽  
M. Shima ◽  
K. Sayama ◽  
H. Tarui ◽  
H. Nishiwaki ◽  
...  

ABSTRACTThe film properties and solar cell performance of a-SiGe:H samples with the same optical gap and different combinations of hydrogen content (CH) and germanium content (CGe) have been compared. The optimum composition for the initial properties, such as the tail characteristic energy, defect density and conversion efficiency of the solar cell, was determined, and the differences could be explained by the difference in H bonding configuration. The degradation ratio of the conversion efficiency becomes larger in higher CH samples. This suggests that hydrogen or Si-H2 participates in light-induced degradation. As a result, the optimum CH for an efficient solar cell is believed to shift to the lower CH region after light soaking. Based on these findings, the stabilized conversion efficiency of 3.3% under red light (γ>650nm) for an a-SiGe:H single-junction solar cell (1cm2) and 10.6% under lsun light for an a-Si/a-SiGe double-junction stacked solar cell (1cm2) have been achieved. The degradation ratio is only 8.6% for the double-junction solar cell.


2019 ◽  
Vol 14 (1) ◽  
pp. 1-5
Author(s):  
Victor De Rezende Cunha ◽  
Daniel Neves Micha ◽  
Rudy Massami Sakamoto Kawabata ◽  
Luciana Dornelas Pinto ◽  
Mauricio Pamplona Pires ◽  
...  

Electrical current mismatching is a well-known limitation of triple junction solar cells that lowers the final conversion efficiency. Several solutions have been proposed to face this issue, including the insertion of a multiple quantum well structure as the intermediate junction’s active material. With a better matching in the current among the junctions, the total current increases, thus modifying the working conditions of the overall device. In this way, the InGaP top junction needs to be optimized to such new condition. In this work, numerical simulations were carried out aiming the enlargement of the electrical current density of an InGaP pn junction to achieve the proper current matching in triple junction solar cell for spatial applications. The optimized structure has been grown in a GaAs substrate and characterized as a single junction solar cell. Although the measured short circuit current density and conversion efficiency are still well below the theoretically predicted values, processing improvement should lead to adequate cell performance.


2005 ◽  
Vol 44 (No. 31) ◽  
pp. L988-L990 ◽  
Author(s):  
Takashi Yamada ◽  
Akihiro Moto ◽  
Yasuhiro Iguchi ◽  
Mitsuo Takahashi ◽  
So Tanaka ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
pp. 201
Author(s):  
Azhan Ab. Rahman ◽  
Zainal Salam ◽  
Sulaiman Shaari ◽  
Mohd Zulkifli Ramli

Photovoltaic inverter conversion efficiency is closely related to the energy yield of a photovoltaic system. Usually, the peak efficiency (ηmax) value from the inverter data sheet is used, but it is inaccurate because the inverter rarely operates at the peak power. The weighted efficiency is a preferable alternative as it inherently considers the power conversion characteristics of the inverter when subjected to varying irradiance. However, since the weighted efficiency is influenced by irradiance, its value may not be appropriate for different climatic conditions. Based on this premise, this work investigates the non-suitability of the European weighted efficiency (ηEURO) for inverters installed in the Equatorial region. It utilizes a one year data from the Equatorial irradiance profile to recalculate the value of ηEURO (ηEURO_recal) and to compare it with the original ηEURO. Furthermore, a new weighted efficiency formula for the Equatorial climate (ηEQUA) is proposed. Validation results showed that calculated energy yield with ηEQUA closely matched the real energy yield of 3 kW system with only 0.16% difference. It is envisaged that the usage of ηEQUA instead of ηmax or ηEURO will results in a more accurate energy yield and return of investment calculations for PV systems installed in Equatorial regions.


2014 ◽  
Vol 116 (2) ◽  
pp. 683-688 ◽  
Author(s):  
Zhihao Yue ◽  
Honglie Shen ◽  
Ye Jiang ◽  
Weilong Chen ◽  
Quntao Tang ◽  
...  

2018 ◽  
Vol 2 ◽  
pp. 5
Author(s):  
Juan Paolo Lorenzo Gerardo Barrios ◽  
John Raffy Cortez ◽  
Gene Michael Herman ◽  
Aris Larroder ◽  
Bernice Mae Yu Jeco ◽  
...  

A concentrator lens system was designed for a multi-junction solar cell, CDO-100-C3MJ, with an added feature − a convex lens was added above the Fresnel lens in order to improve the output power of the setup and reduce the need for the use of solar trackers. The convex lens setup was tested with the Fresnel lens setup over a 3-day photoperiod by measuring the voltage, current, irradiance, and temperature at every hour. The results showed that the convex lens setup produced 1.94% more power, but only at around midday. The increase in power is due to the convex lens that focuses a greater amount of irradiance on the solar cell over the course of the day.


2020 ◽  
Author(s):  
Maxim Z. Shvarts ◽  
Mariia V. Nakhimovich ◽  
Evgeniya A. Ionova ◽  
Nikolay Yu. Davidyuk ◽  
Andrey A. Soluyanov

Sign in / Sign up

Export Citation Format

Share Document