scholarly journals Renewable Energy Integration for Steam Supply of Industrial Processes—A Food Processing Case Study

Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2532
Author(s):  
Ron-Hendrik Hechelmann ◽  
Jan-Peter Seevers ◽  
Alexander Otte ◽  
Jan Sponer ◽  
Matthias Stark

This study highlights the C O 2 , e -emission reduction potentials and related economic consequences for changing steam generation from fossil to renewable. Seven different utility concepts are developed, including a steam accumulator for load management. Peculiarities for the integration of biogas boilers, biomass-fuelled boilers, electrode steam boilers, biomethane-fuelled solid oxide fuel cells, micro gas turbine, solar energy systems, heat pumps and steam accumulators into a steam system with fluctuating steam demand are explained and the energy balance based models for the simulation study are described. The characteristics of batch processes, start up times and part load efficiency are considered via an annual dynamic simulation. Based on a detailed process analysis and dimensioning of the utilities and the accumulator a comprehensive simulation study is conducted for a pet food processing company having an average steam demand of 18,000 MWh at around 9 bar and 3 t/h. The results show that the highest C O 2 , e -emissions reduction of up to 63% is achieved by the transition to a solid biomass-fuelled boiler system. This leads to an increase of the operating costs by 27.8%.

2016 ◽  
Vol 834 ◽  
pp. 205-210
Author(s):  
Elena Loredana Terzea ◽  
Antonia Cristina Barascu ◽  
Iulian Razvan Soare

Batch processes includes paint manufacturing, food processing, pharmaceutical industry, etc. The paper focuses on the process of paint manufacturing. The main contribution is the design of the current value stream mapping, very useful to understand the causes of waste and lead-time. This paper points out the necessity of applying lean methods within automotive industry, sector of bumpers painting and assembly, based on a real case-study.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4440 ◽  
Author(s):  
Wouter Schram ◽  
Atse Louwen ◽  
Ioannis Lampropoulos ◽  
Wilfried van Sark

In this research, the greenhouse gas (GHG) emission reduction potentials of electric vehicles, heat pumps, photovoltaic (PV) systems and batteries were determined in eight different countries: Austria, Belgium, France, Germany, Italy, the Netherlands, Portugal and Spain. Also, the difference between using prosuming electricity as a community (i.e., energy sharing) and prosuming it as an individual household was calculated. Results show that all investigated technologies have substantial GHG emission reduction potential. A strong moderating factor is the existing electricity generation mix of a country: the GHG emission reduction potential is highest in countries that currently have high hourly emission factors. GHG emission reduction potentials are highest in southern Europe (Portugal, Spain, Italy) and lowest in countries with a high share of nuclear energy (Belgium, France). Hence, from a European GHG emission reduction perspective, it has most impact to install PV in countries that currently have a fossil-fueled electricity mix and/or have high solar irradiation. Lastly, we have seen that energy sharing leads to an increased GHG emission reduction potential in all countries, because it leads to higher PV capacities.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2560 ◽  
Author(s):  
Nikunj Gangar ◽  
Sandro Macchietto ◽  
Christos N. Markides

We assess the technoeconomic feasibility of onsite electricity and steam generation from recovered low-grade thermal energy in oil refineries using organic Rankine cycle (ORC) engines and mechanical vapour compression (MVC) heat pumps in various countries. The efficiencies of 34 ORC and 20 MVC current commercial systems are regressed against modified theoretical models. The resulting theoretical relations predict the thermal efficiency of commercial ORC engines within 4–5% and the coefficient of performance (COP) of commercial MVC heat pumps within 10–15%, on average. Using these models, the economic viability of ORC engines and MVC heat pumps is then assessed for 19 refinery streams as a function of heat source and sink temperatures, and the available stream thermal energy, for gas and electricity prices in selected countries. Results show that: (i) conversion to electrical power with ORC engines is, in general, economically feasible for heat-source temperatures >70 °C, however with high sensitivity to energy prices; and (ii) steam generation in MVC heat pumps, even more sensitive to energy prices, is in some cases not economical under any conditions—it is only viable with high gas/low electricity prices, for large heat sources (>2 MW) and higher temperatures (>140 °C). In countries and conditions with positive economics, payback periods down to two years are found for both technologies.


1993 ◽  
Vol 17 ◽  
pp. S15-S20 ◽  
Author(s):  
J. Corominas ◽  
A. Espuna ◽  
L. Puigjaner

2013 ◽  
pp. 529-550
Author(s):  
Corinna Klink ◽  
Daniel Denkert ◽  
Mario Vargheamidis ◽  
Nils Kern ◽  
Tobias Lörch

Sign in / Sign up

Export Citation Format

Share Document