scholarly journals Distributed Power Hardware-in-the-Loop Testing Using a Grid-Forming Converter as Power Interface

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3770
Author(s):  
Steffen Vogel ◽  
Ha Thi Nguyen ◽  
Marija Stevic ◽  
Tue Vissing Jensen ◽  
Kai Heussen ◽  
...  

This paper presents an approach to extend the capabilities of smart grid laboratories through the concept of Power Hardware-in-the-Loop (PHiL) testing by re-purposing existing grid-forming converters. A simple and cost-effective power interface, paired with a remotely located Digital Real-time Simulator (DRTS), facilitates Geographically Distributed Power Hardware Loop (GD-PHiL) in a quasi-static operating regime. In this study, a DRTS simulator was interfaced via the public internet with a grid-forming ship-to-shore converter located in a smart-grid testing laboratory, approximately 40 km away from the simulator. A case study based on the IEEE 13-bus distribution network, an on-load-tap-changer (OLTC) controller and a controllable load in the laboratory demonstrated the feasibility of such a setup. A simple compensation method applicable to this multi-rate setup is proposed and evaluated. Experimental results indicate that this compensation method significantly enhances the voltage response, whereas the conservation of energy at the coupling point still poses a challenge. Findings also show that, due to inherent limitations of the converter’s Modbus interface, a separate measurement setup is preferable. This can help achieve higher measurement fidelity, while simultaneously increasing the loop rate of the PHiL setup.

Author(s):  
Qian Wang ◽  
Chenkun Qi ◽  
Feng Gao ◽  
Xianchao Zhao ◽  
Anye Ren ◽  
...  

The contact process of a space docking device needs verification before launching. The verification cannot only rely on the software simulation since the contact dynamic models are not accurate enough yet, especially when the geometric shape of the device is complex. Hardware-in-the-loop simulation is a choice to perform the ground test, where the contact dynamic model is replaced by a real device and the real contact occurs. However, the Hardware-in-the-loop simulation suffers from energy increase and instability since time delay is unavoidable. The existing delay compensation methods are mainly focused on a uniaxial or three-dimensional contact. In this paper, a force-based delay compensation method is proposed for the hardware-in-the-loop simulation of a six degree-of-freedom space contact. A six degree-of-freedom dynamic model of the spacecraft motion is derived, and a six degree-of-freedom delay compensation method is proposed. The delay is divided into track delay and measurement delay, which are compensated individually. Experiment results show that the proposed delay compensation method is effective for the six degree-of-freedom space contact.


2018 ◽  
Vol 8 (11) ◽  
pp. 2278 ◽  
Author(s):  
Martin Schvarcbacher ◽  
Katarína Hrabovská ◽  
Bruno Rossi ◽  
Tomáš Pitner

The Smart Grid (SG) is nowadays an essential part of modern society, providing two-way energy flow and smart services between providers and customers. The main drawback is the SG complexity, with an SG composed of multiple layers, with devices and components that have to communicate, integrate, and cooperate as a unified system. Such complexity brings challenges for ensuring proper reliability, resilience, availability, integration, and security of the overall infrastructure. In this paper, we introduce a new smart grid testing management platform (herein called SGTMP) for executing real-time hardware-in-the-loop SG tests and experiments that can simplify the testing process in the context of interconnected SG devices. We discuss the context of usage, the system architecture, the interactive web-based interface, the provided API, and the integration with co-simulations frameworks to provide virtualized environments for testing. Furthermore, we present one main scenario about the stress-testing of SG devices that can showcase the applicability of the platform.


Author(s):  
Geetha Kamurthy ◽  
Sreenivasappa Bhupasandra Veeranna

The extensive use of fossil fuel is destroying the balance of nature that could lead to many problems in the forthcoming era. Renewable energy resources are a ray of hope to avoid possible destruction. Smart grid and distributed power generation systems are now mainly built with the help of renewable energy resources. The integration of renewable energy production system with the smart grid and distributed power generation is facing many challenges that include addressing the issue of isolation and power quality. This paper presents a new approach to address the aforementioned issues by proposing a hybrid bypass technique concept to improve the overall performance of the grid-tied inverter in solar power generation. The topology with the proposed technique is presented using traditional H5, oH5 and H6 inverter. Comparison of topologies with literature is carried out to check the feasibility of the method proposed. It is found that the leakage current of all the proposed inverters is 9 mA and total harmonic distortion is almost about 2%. The proposed topology has good efficiency, common mode and differential mode characteristics.


2012 ◽  
Vol 433-440 ◽  
pp. 6912-6916
Author(s):  
Ji Hong Zhang ◽  
Zhen Kui Wu ◽  
Yi Li Wei ◽  
Ji Hong Zhang ◽  
Zhen Kui Wu ◽  
...  

The produce causation and the development direction of the distributed power and the far-reaching meaning of constructing China characteristic Smart Grid are introduced in this paper. The influence to the traditional transmit electricity net protection under the background of the distributed power being connected on a large scale and the emphases attention technic problems are analysed emphatically. The tiny net technic is explored, which is the main method of the distributed power connection and bring into play its efficiency. Finally, the development aim of the Smart Grid protect system is prospected.


Author(s):  
Bethany Sparn ◽  
Dheepak Krishnamurthy ◽  
Annabelle Pratt ◽  
Mark Ruth ◽  
Hongyu Wu

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 90171-90179 ◽  
Author(s):  
Harshavardhan Palahalli ◽  
Enrico Ragaini ◽  
Giambattista Gruosso

Sign in / Sign up

Export Citation Format

Share Document