scholarly journals Hybrid Modulation for Modular Voltage Source Inverters with Coupled Reactors

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4450
Author(s):  
Krzysztof Jakub Szwarc ◽  
Pawel Szczepankowski ◽  
Janusz Nieznański ◽  
Cezary Swinarski ◽  
Alexander Usoltsev ◽  
...  

This paper proposes and discusses a concept of a hybrid modulation for the control of modular voltage source inverters with coupled reactors. The use of coupled reactors as the integrating elements leads to significant reduction in the size and weight of the circuit. The proposed modulation combines novel coarsely quantized pulse amplitude modulation (CQ-PAM) and innovative space-vector pulse width modulation (SVPWM). The former enjoys very low transistor switching frequency and low harmonic elimination, while the latter ensures high resolution of amplitude control. The SVPWM is based on the use of barycentric coordinates. The feasibility of the proposed solution is verified by simulations and laboratory tests of a 12-pulse modular voltage source inverters with two-level and three-level component inverters.

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4352 ◽  
Author(s):  
Riccardo Mandrioli ◽  
Aleksandr Viatkin ◽  
Manel Hammami ◽  
Mattia Ricco ◽  
Gabriele Grandi

A complete analysis of the ac output current ripple in four-leg voltage source inverters considering multiple modulation schemes is provided. In detail, current ripple envelopes and peak-to-peak profiles have been determined in the whole fundamental period and a comprehensive method providing the current ripple rms has been achieved, all of them as a function of the modulation index. These characteristics have been determined for both phase and neutral currents, considering the most popular common-mode injection schemes. Particular attention has been paid to the performance of discontinuous pulse width modulation (DPWM) methods, including DPWMMAX and DPWMMIN, and their four most popular combinations DPWM0, DPWM1, DPWM2, and DPWM3. Furthermore, a comparison with a few continuous techniques (sinusoidal, centered pulse width modulations, and third harmonic injection) has been provided as well. Moreover, the average switching frequency and switching losses are analyzed, determining which PWM technique ensures minimum output current ripple within the linear modulation range at different assumptions. Numerical simulations and laboratory tests have been conducted to extensively verify all the analytical claims for all the considered PWM injections.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
L. U. Sudha ◽  
J. Baskaran ◽  
S. A. Elankurisil

This paper corroborates three different hybrid modulation strategies suitable for single-phase voltage source inverter. The proposed method is formulated using fundamental switching and carrier based pulse width modulation methods. The main tale of this proposed method is to optimize a specific performance criterion, such as minimization of the total harmonic distortion (THD), lower order harmonics, switching losses, and heat losses. The proposed method is articulated using fundamental switching and carrier based pulse width modulation methods. Thus, the harmonic pollution in the power system will be reduced and the power quality will be augmented with better harmonic profile for a target fundamental output voltage. The proposed modulation strategies are simulated in MATLAB r2010a and implemented in a Xilinx spartan 3E-500 FG 320 FPGA processor. The feasibility of these modulation strategies is authenticated through simulation and experimental results.


2015 ◽  
Vol 9 (1) ◽  
pp. 553-559
Author(s):  
HU Xin-xin ◽  
Chen Chun-lan

In order to optimize the electric energy quality of HVDC access point, a modular multilevel selective harmonic elimination pulse-width modulation (MSHE-PWM) method is proposed. On the basis of keeping the minimum action frequency of the power device, MSHE-PWM method can meet the requirement for accurately eliminating low-order harmonics in the output PWM waveform. Firstly, establish the basic mathematical model of MMC topology and point out the voltage balance control principle of single modules; then, analyze offline gaining principle and realization way of MSHEPWM switching angle; finally, verify MSHE-PWM control performance on the basis of MMC reactive power compensation experimental prototype. The experimental result shows that the proposed MSHE-PWM method can meet such performance indexes as low switching frequency and no lower-order harmonics, and has verified the feasibility and effectiveness thereof for optimizing the electric energy quality of HVDC access point.


2017 ◽  
Vol 27 (2) ◽  
pp. 45-60
Author(s):  
V. Jegathesan

This paper presents an efficient and reliable Genetic Algorithm based solution for Selective Harmonic Elimination (SHE) switching pattern. This method eliminates considerable amount of lower order line voltage harmonics in Pulse Width Modulation (PWM) inverter. Determination of pulse pattern for the elimination of some lower order harmonics of a PWM inverter necessitates solving a system of nonlinear transcendental equations. Genetic Algorithm is used to solve nonlinear transcendental equations for PWM-SHE. Many methods are available to eliminate the higher order harmonics and it can be easily removed. But the greatest challenge is to eliminate the lower order harmonics and this is successfully achieved using Genetic Algorithm without using Dual transformer. Simulations using MATLABTM and Powersim with experimental results are carried out to validate the solution. The experimental results show that the harmonics up to 13th were totally eliminated. 


2005 ◽  
Vol 38 (1) ◽  
pp. 430-435 ◽  
Author(s):  
Pedro Luis Roncero-Sánchez ◽  
Vicente Feliu-Batlle ◽  
Aurelio García-Cerrada ◽  
Pablo García-González

Sign in / Sign up

Export Citation Format

Share Document