scholarly journals Simulating Fracture Sealing by Granular LCM Particles in Geothermal Drilling

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4878
Author(s):  
Lu Lee ◽  
Arash Dahi Taleghani

Lost circulation occurs when the returned fluid is less than what is pumped into the well due to loss of fluid to pores or fractures. A lost-circulation event is a common occurrence in a geothermal well. Typical geothermal reservoirs are often under-pressured and have larger fracture apertures. A severe lost-circulation event is costly and may lead to stuck pipe, well instability, and well abandonment. One typical treatment is adding lost-circulation materials (LCMs) to seal fractures. Conventional LCMs fail to properly seal fractures because their mechanical limit is exceeded at elevated temperatures. In this paper, parametric studies in numerical simulations are conducted to better understand different thermal effects on the sealing mechanisms of LCMs. The computational fluid dynamics (CFDs) and the discrete element method (DEM) are coupled to accurately capture the true physics of sealing by granular materials. Due to computational limits, the traditional Eulerian–Eulerian approach treats solid particles as a group of continuum matter. With the advance of modern computational power, particle bridging is achievable with DEM to track individual particles by modeling their interactive forces between each other. Particle–fluid interactions can be modeled by coupling CFD algorithms. Fracture sealing capability is investigated by studying the effect of four individual properties including fluid viscosity, particle size, friction coefficient, and Young’s modulus. It is found that thermally degraded properties lead to inefficient fracture sealing.

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2020 ◽  
Author(s):  
Hanyi Zhong ◽  
Guangcheng Shen ◽  
Peng Yang ◽  
Zhengsong Qiu ◽  
Junbin Jin ◽  
...  

In order to mitigate the loss circulation of oil-based drilling fluids (OBDFs), an oil-absorbent polymer (OAP) composed by methylmethacrylate (MMA), butyl acrylate (BA), and hexadecyl methacrylate (HMA) was synthesized by suspension polymerization and characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and scanning electronic microscopy (SEM). The oil-absorptive capacity of OAP under different solvents was measured as the function of temperature and time. The effect of the OAP on the rheological and filtration properties of OBDFs was initially evaluated, and then the sealing property of OAP particles as lost circulation materials (LCMs) was examined by a high-temperature and high-pressure (HTHP) filtration test, a sand bed filtration test, a permeable plugging test, and a fracture sealing testing. The test results indicated that the addition of OAP had relatively little influence on the rheological properties of OBDF at content lower than 1.5 w/v % but increased the fluid viscosity remarkably at content higher than 3 w/v %. It could reduce the HTHP filtration and improve the sealing capacity of OBDF significantly. In the sealing treatment, after addition into the OBDF, the OAP particles could absorb oil accompanied with volume enlargement, which led to the increase of the fluid viscosity and slowing down of the fluid loss speed. The swelled and deformable OAP particles could be squeezed into the micro-fractures with self-adoption and seal the loss channel. More important, fluid loss was dramatically reduced when OAP particles were combined with other conventional LCMs by a synergistic effect.


2022 ◽  
pp. 1-15
Author(s):  
Lu Lee ◽  
Arash Dahi Taleghani

Summary Lost circulation materials (LCMs) are essential to combat fluid loss while drilling and may put the whole operation at risk if a proper LCM design is not used. The focus of this research is understanding the function of LCMs in sealing fractures to reduce fluid loss. One important consideration in the success of fracture sealing is the particle-size distribution (PSD) of LCMs. Various studies have suggested different guidelines for obtaining the best size distribution of LCMs for effective fracture sealing based on limited laboratory experiments or field observations. Hence, there is a need for sophisticated numerical methods to improve the LCM design by providing some predictive capabilities. In this study, computational fluid dynamics (CFD) and discrete element methods (DEM) numerical simulations are coupled to investigate the influence of PSD of granular LCMs on fracture sealing. Dimensionless variables were introduced to compare cases with different PSDs. We validated the CFD-DEM model in reproducing specific laboratory observations of fracture-sealing experiments within the model boundary parameters. Our simulations suggested that a bimodally distributed blend would be the most effective design in comparison to other PSDs tested here.


Author(s):  
Mingzheng Yang ◽  
Yuanhang Chen ◽  
Frederick B. Growcock ◽  
Feifei Zhang

Abstract Drilling-induced lost circulation should be managed before and during fracture initiation rather than after they propagate to form large fractures and losses become uncontrollable. Recent studies indicated the potentially critical role of filtercake in strengthening the wellbore through formation of a pressure-isolating barrier, as well as plugging microfractures during fracture initiation. In this study, an experimental investigation was conducted to understand the role played by filtercake in the presence of lost circulation materials (LCMs). A modified permeability plugging apparatus (PPA) with slotted discs was used to simulate whole mud loss through fractures of known width behind filtercake. Cumulative fluid loss upon achieving a complete seal and the maximum sealing pressure were measured to evaluate the combined effects of filtercake and LCMs in preventing and reducing fluid losses. The effects of some filtercake properties (along with LCM type, concentration and particle size distribution) on filtercake rupture and fracture sealing were investigated. The results indicate that filtercake can accelerate fracture sealing and reduce total mud loss. Efficiently depositing filtercake while drilling can reduce the concentration of LCM that is required to plug and isolate incipient fractures.


SPE Journal ◽  
2017 ◽  
Vol 22 (04) ◽  
pp. 1178-1188 ◽  
Author(s):  
Amin Mehrabian ◽  
Younane Abousleiman

Summary Wellbore tensile failure is a known consequence of drilling with excessive mud weight, which can cause costly events of lost circulation. Despite the successful use of lost-circulation materials (LCMs) in treating lost-circulation events of the drilling operations, extensions of wellbore-stability models to the case of a fractured and LCM-treated wellbore have not been published. This paper presents an extension of the conventional wellbore-stability analysis to such circumstances. The proposed wellbore geomechanics solution revisits the criteria for breakdown of a fractured wellbore to identify an extended margin for the equivalent circulation density (ECD) of drilling. An analytical approach is taken to solve for the related multiscale and nonlinear problem of the three-way mechanical interaction between the wellbore, fracture wings, and LCM aggregate. The criteria for unstable propagation of existing near-wellbore fractures, together with those for initiating secondary fractures from the wellbore, are obtained. Results suggest that, in many circumstances, the occurrence of both incidents can be prevented, if the LCM blend is properly engineered to recover certain depositional and mechanical properties at downhole conditions. Under such optimal design conditions, the maximum ECD to which the breakdown limit of a permeable formation could be enhanced is predicted.


2018 ◽  
Vol 9 (1) ◽  
pp. 281-296 ◽  
Author(s):  
Ahmed Mansour ◽  
Arash Dahi Taleghani ◽  
Saeed Salehi ◽  
Guoqiang Li ◽  
C. Ezeakacha

Sign in / Sign up

Export Citation Format

Share Document