scholarly journals A Corrected Equilibrium Manifold Expansion Model for Gas Turbine System Simulation and Control

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4904
Author(s):  
Linhai Zhu ◽  
Jinfu Liu ◽  
Yujia Ma ◽  
Weixing Zhou ◽  
Daren Yu

During recent decades, the equilibrium manifold expansion (EME) model has been considered as a powerful identification tool for complex industrial systems with the aim of system control and simulation. Based on a two-step “dynamic and static” identification method, an approximate nonlinear state-space model is built by using multiple polynomials. However, the existing identification method is only suitable for single-input (SI) systems, but not for multi-input (MI) systems, where EME models cannot guarantee global calculation stability. For solving such a problem, this paper proposes a corrected equilibrium manifold expansion (CEME) model based on gas turbine prior knowledge. The equilibrium manifold is extended in dimension by introducing similarity equations instead of the high dimensional polynomial fitting. The dynamic similarity criterion of similarity theory guarantees the global stability of the CEME model. Finally, the comparative test between the CEME model and the existing MI-EME model is carried out through case studies involving data that are generated by a general turbofan engine simulation. Simulations show superior precision and calculation stability of the proposed model in capturing nonlinear behaviors of the gas turbine engine.

2001 ◽  
Vol 21 (1) ◽  
pp. 111-118 ◽  
Author(s):  
Zhiwu Xie ◽  
Ming Su ◽  
Shilie Weng

1992 ◽  
Vol 114 (4) ◽  
pp. 763-767 ◽  
Author(s):  
J. W. Watts ◽  
T. E. Dwan ◽  
C. G. Brockus

An analog fuel control for a gas turbine engine was compared with several state-space derived fuel controls. A single-spool, simple cycle gas turbine engine was modeled using ACSL (high level simulation language based on FORTRAN). The model included an analog fuel control representative of existing commercial fuel controls. The ACSL model was stripped of nonessential states to produce an eight-state linear state-space model of the engine. The A, B, and C matrices, derived from rated operating conditions, were used to obtain feedback control gains by the following methods: (1) state feedback; (2) LQR theory; (3) Bellman method; and (4) polygonal search. An off-load transient followed by an on-load transient was run for each of these fuel controls. The transient curves obtained were used to compare the state-space fuel controls with the analog fuel control. The state-space fuel controls did better than the analog control.


2000 ◽  
Author(s):  
Zhiwu Xie ◽  
Ming Su ◽  
Shilie Weng

Abstract The static and transient performance of a gas turbine engine is determined by both the characteristics of the engine components and their interactions. This paper presents a generalized simulation framework that enables the integration of different component and system simulation codes. The concept of engine simulation integration and its implementation model is described. The model is designed as an object-oriented system, in which various simulation tasks are assigned to individual software components that interact with each other. A new design rationale called “message-based modeling” and its resulting class structure is presented and analyzed. The object model is implemented within a heterogeneous network environment. To demonstrate its flexibility, the codes that deal with different engine components are separately programmed on different computers running various operating systems. These components communicate with each other via a CORBA compliant ORB, which simulates the overall performance of an engine system. The resulting system has been tested on a Local Area Network (LAN) to simulate the transient response of a three-shaft gas turbine engine, subject to small fuel step perturbations. The simulation results for various network configurations are presented. It is evident that in contrast to a standalone computer simulation, the distributed implementation requires much longer simulation time. This difference of simulation efficiency is analyzed and explained. The limitations of this endeavor, along with some future research topics, are also reported in this paper.


1997 ◽  
Author(s):  
David Costura ◽  
Tomas Velez ◽  
Patrick Lawless ◽  
Steven Frankel ◽  
David Costura ◽  
...  

Author(s):  
O. F. Qi ◽  
N. R. L. Maccallum ◽  
P. J. Gawthrop

This paper describes the design of a closed-loop nonlinear controller to improve the dynamic response of a single-spool gas turbine engine. The nonlinear controller is obtained by scheduling the gains of multivariable compensators as a function of engine non-dimensional shaft speed. The compensators, whose outputs are fuel flow and nozzle area, are designed using optimal control theory based on a set of linear models generated from a nonlinear engine simulation. Investigations are also made into developing simple algorithms to obtain an analytical expression for the compressor given its characteristic. The detailed process of developing a nonlinear simulation model for the engine is also described. The open-loop fuel controller is studied using the digital simulation.


Author(s):  
J. C. Blanton ◽  
W. F. O’Brien

An empirically-based engine simulation model was developed to analyze the operation of a heavy-duty gas turbine on ash-bearing fuel. The effect of the ash in the combustion products on turbine efficiency was determined employing field data. The model was applied to the prediction of the performance of an advanced-cooled turbine engine with a water-cooled first-stage nozzle, when operated with ash-bearing fuels. Experimental data from a turbine simulator rig were used to estimate the expected rates of ash deposit formation in the advanced-cooled turbine engine, so that the results could be compared with those for current engines. The results of the simulations indicate that the rate of decrease in engine power would be 32 percent less in the advanced-cooled engine with water cooling. An improvement in predicted specific fuel consumption performance was also noted, with a rate of increase of 38 percent for the advanced-cooled engine.


1983 ◽  
Vol 105 (1) ◽  
pp. 167-171
Author(s):  
J. C. Blanton ◽  
W. F. O’Brien

An empirically based engine simulation model was developed to analyze the operation of a heavy-duty gas turbine on ash-bearing fuel. The effect of the ash in the combustion products on turbine efficiency was determined employing field data. The model was applied to the prediction of the performance of an advanced-cooled turbine engine with a water-cooled first-stage nozzle, when operated with ash-bearing fuels. Experimental data from a turbine simulator rig were used to estimate the expected rates of ash deposit formation in the advanced-cooled turbine engine, so that the results could be compared with those for current engines. The results of the simulations indicate that the rate of decrease in engine power would be 32 percent less in the advanced-cooled engine with water cooling. An improvement in predicted specific fuel consumption performance was also noted, with a rate of increase of 38 percent for the advanced-cooled engine.


1993 ◽  
Author(s):  
T. H. Wong

A simplified turboshaft gas turbine engine model called the direct transient method (DTM) model has been developed. The DTM model consists of table look-up data generated from the actual engine data or the transient engine simulation. The DTM model accounts for heat storage, tip clearance and volume dynamics effects. It can, therefore, better predict engine transient responses and turbine metal temperature than the traditional engine horsepower extraction (HPX) model. This paper presents in detail the DTM methodology for generating accurate simplified engine models of transient performance. Comparisons of engine transient responses between the DTM and HPX models are provided.


Author(s):  
Charles C. Shortlidge

SatCon Technology Corporation has completed design, fabrication, and the first round of test of a 373 kW (500 hp), two-spool, intercooled gas turbine engine with integral induction type alternators. This turbine-alternator is the prime mover for a World Sports Car class hybrid electric vehicle under development by Chrysler Corporation. The complete hybrid electric vehicle propulsion system features the 373 kW (500 hp) turbine-alternator unit, a 373 kW (500 hp) 3.25 kW-h (4.36 hp-h) flywheel, a 559 kW (750 hp) traction motor, and the propulsion system control system. This paper presents and discusses the major attributes of the control system associated with the turbine-alternator unit. Also discussed is the role and operational requirements of the turbine-alternator unit as part of the complete hybrid electric vehicle propulsion system.


Sign in / Sign up

Export Citation Format

Share Document