scholarly journals Comparison of Profitability of PV Electricity Sharing in Renewable Energy Communities in Selected European Countries

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5007 ◽  
Author(s):  
Johannes Radl ◽  
Andreas Fleischhacker ◽  
Frida Huglen Revheim ◽  
Georg Lettner ◽  
Hans Auer

The economic value of photovoltaic (PV) systems depends on country-specific conditions. This study investigates the impact of grid fees, solar irradiance and local consumption on the profitability and penetration of PV systems and batteries in renewable energy communities. The linear optimization model calculates the optimal investments into PV and storages applied on a test community, which represents the European housing situation. The comparison of eight countries considers individual heat and cooling demands as well as sector coupling. Results show that renewable energy communities have the potential to reduce electricity costs due to community investments and load aggregation but do not necessarily lead to more distributed PV. Besides full-load hours, the energy component of electricity tariffs has the highest impact on PV distribution. Under current market conditions, battery energy storage systems are rarely profitable for increasing PV self-consumption but there is potential with power pricing. Renewable energy communities enable individuals to be a prosumer without the necessity of owning a PV system. This could lead to more (community) PV investments in the short term. Hence, it hinders investments in a saturated PV market.

2021 ◽  
Vol 11 (17) ◽  
pp. 7851
Author(s):  
Cheng-Yu Peng ◽  
Cheng-Chien Kuo ◽  
Chih-Ta Tsai

As the cost of photovoltaic (PV) systems and battery energy storage systems (BESS) decreases, PV-plus-BESS applied to behind-the-meter (BTM) market has grown rapidly in recent years. With user time of use rates (TOU) for charging and discharging schedule, it can effectively reduce the electricity expense of users. This research uses the contract capacity of an actual industrial user of 7.5 MW as a research case, and simulates a PV/BESS techno-economic scheme through the HOMER Grid software. Under the condition that the electricity demand is met and the PV power generation is fully used, the aim is to find the most economical PV/BESS capacity allocation and optimal contract capacity scheme. According to the load demand and the electricity price, the analysis shows that the PV system capacity is 8.25 MWp, the BESS capacity is 1.25 MW/3.195 MWh, and the contract capacity can be reduced to 6 MW. The benefits for the economical solution are compared as follows: 20-year project benefit, levelized cost of energy (LCOE), the net present cost (NPC), the internal rate of return (IRR), the return on investment (ROI), discounted payback, total electricity savings, renewable fraction (RF), and the excess electricity fraction. Finally, the sensitivity analysis of the global horizontal irradiation, electricity price, key component cost, and real interest rate will be carried out with the most economical solution by analyzing the impacts and evaluating the economic evaluation indicators. The analysis method of this research can be applied to other utility users to program the economic benefit evaluation of PV/BESS, especially an example for Taiwan’s electricity prices at low levels in the world.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 798
Author(s):  
Wenqiang Zhu ◽  
Jiang Guo ◽  
Guo Zhao

The renewable energy microgrid is an effective solution for island energy supply with the advantages of low energy cost, environmental protection, and reliability. In this paper, an island renewable energy microgrid integrated with desalination units and electric vehicles is established to meet the self-satisfaction of the island’s sustainable electricity, fresh water, and transportation. The source side components of the system include photovoltaic cells, wind turbines, diesel generators, battery energy storage systems. A multi-objective dispatching optimization method based on the flexibility of electric vehicles and desalination units is proposed comprehensively considering the economy and renewable energy penetration indexes. The optimization objectives are minimizing the comprehensive operating cost, and the net load fluctuation. An improved multi-objective grey wolf optimizer is adopted to solve the dispatching problem. The system is modeled and simulated by MATLAB software. The feasibility of the proposed dispatching optimization method is verified by case studies and operation simulation. Four different cases are compared and analyzed to study the impact of EVs and DES on dispatching optimization.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2312
Author(s):  
Marco Pasetti

Battery energy storage systems (BESSs) are increasingly adopted to mitigate the negative effects caused by the intermittent generation of photovoltaic (PV) systems. The majority of commercial BESSs implement the self-consumption, rule-based approach, which aims at storing the excess of PV production, and then reusing it when the power demand of the loads exceeds the PV power generation. Even though this approach proved to be a valid solution to increase the self-consumption of distributed generators, its ability to reduce the power flow uncertainties caused by PV systems is still debatable. To fill this gap, this study aims at answering this question by proposing a dedicated set of key performance indicators (KPIs). These KPIs are used to evaluate the performance of a 13.8 kWp/25.2 kWh Lithium-Ion BESS coupled with a 64 kWp PV system. The results of the study revealed that the impact of the storage system had almost negligible effects on the uncertainty of the net power flows, while showing better results in terms of the reduction of the absolute power ramps, particularly during the BESS charge stages. These results represent an interesting point of discussion by suggesting that different storage control approaches should be investigated.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2503
Author(s):  
Paulo Rotella Junior ◽  
Luiz Célio Souza Rocha ◽  
Sandra Naomi Morioka ◽  
Ivan Bolis ◽  
Gianfranco Chicco ◽  
...  

Sources such as solar and wind energy are intermittent, and this is seen as a barrier to their wide utilization. The increasing grid integration of intermittent renewable energy sources generation significantly changes the scenario of distribution grid operations. Such operational challenges are minimized by the incorporation of the energy storage system, which plays an important role in improving the stability and the reliability of the grid. This study provides the review of the state-of-the-art in the literature on the economic analysis of battery energy storage systems. The paper makes evident the growing interest of batteries as energy storage systems to improve techno-economic viability of renewable energy systems; provides a comprehensive overview of key methodological possibilities for researchers interested in economic analysis of battery energy storage systems; indicates the need to use adequate economic indicators for investment decisions; and identifies key research topics of the analyzed literature: (i) photovoltaic systems with battery energy storage systems for residential areas, (ii) comparison between energy storage technologies, (iii) power quality improvement. The last key contribution is the proposed research agenda.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1379
Author(s):  
Md Ruhul Amin ◽  
Michael Negnevitsky ◽  
Evan Franklin ◽  
Kazi Saiful Alam ◽  
Seyed Behzad Naderi

In power systems, high renewable energy penetration generally results in conventional synchronous generators being displaced. Hence, the power system inertia reduces, thus causing a larger frequency deviation when an imbalance between load and generation occurs, and thus potential system instability. The problem associated with this increase in the system’s dynamic response can be addressed by various means, for example, flywheels, supercapacitors, and battery energy storage systems (BESSs). This paper investigates the application of BESSs for primary frequency control in power systems with very high penetration of renewable energy, and consequently, low levels of synchronous generation. By re-creating a major Australian power system separation event and then subsequently simulating the event under low inertia conditions but with BESSs providing frequency support, it has been demonstrated that a droop-controlled BESS can greatly improve frequency response, producing both faster reaction and smaller frequency deviation. Furthermore, it is shown via detailed investigation how factors such as available battery capacity and droop coefficient impact the system frequency response characteristics, providing guidance on how best to mitigate the impact of future synchronous generator retirements. It is intended that this analysis could be beneficial in determining the optimal BESS capacity and droop value to manage the potential frequency stability risks for a future power system with high renewable energy penetrations.


Clean Energy ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 196-207
Author(s):  
Shoichi Sato ◽  
Yasuhiro Noro

Abstract The introduction of large-scale renewable energy requires a control system that can operate multiple distributed inverters in a stable way. This study proposes an inverter control method that uses information corresponding to the inertia of the synchronous generator to coordinate the operation of battery energy storage systems. Simulation results for a system with multiple inverters applying the control method are presented. Various faults such as line-to-line short circuits and three-phase line-to-ground faults were simulated. Two fault points with different characteristics were compared. The voltage, frequency and active power quickly returned to their steady-state values after the fault was eliminated. From the obtained simulation results, it was verified that our control method can be operated stably against various faults.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3369
Author(s):  
Maria C. Fotopoulou ◽  
Panagiotis Drosatos ◽  
Stefanos Petridis ◽  
Dimitrios Rakopoulos ◽  
Fotis Stergiopoulos ◽  
...  

This paper introduces a Model Predictive Control (MPC) strategy for the optimal energy management of a district whose buildings are equipped with vertically placed Building Integrated Photovoltaic (BIPV) systems and Battery Energy Storage Systems (BESS). The vertically placed BIPV systems are able to cover larger areas of buildings’ surfaces, as compared with conventional rooftop PV systems, and reach their peak of production during winter and spring, which renders them suitable for energy harvesting especially in urban areas. Driven by both these relative advantages, the proposed strategy aims to maximize the district’s autonomy from the external grid, which is achieved through the cooperation of interactive buildings. Therefore, the major contribution of this study is the management and optimal cooperation of a group of buildings, each of which is equipped with its own system of vertical BIPV panels and BESS, carried out by an MPC strategy. The proposed control scheme consists of three main components, i.e., the forecaster, the optimizer and the district, which interact periodically with each other. In order to quantitatively evaluate the benefits of the proposed MPC strategy and the implementation of vertical BIPV and BESS, a hypothetical five-node distribution network located in Greece for four representative days of the year was examined, followed by a sensitivity analysis to examine the effect of the system configuration on its performance.


2021 ◽  
Author(s):  
Hassan Hayajneh ◽  
Xuewei Zhang

To minimize the curtailment of renewable generation and incentivize grid-scale energy storage deployment, a concept of combining stationary and mobile applications of battery energy storage systems built within renewable energy farms is proposed. A simulation-based optimization model is developed to obtain the optimal design parameters such as battery capacity and power ratings by solving a multi-objective optimization problem that aims to maximize the economic profitability, the energy provided for transportation electrification, the demand peak shaving, and the renewable energy utilized. Two applications considered for the stationary energy storage systems are the end-consumer arbitrage and frequency regulation, while the mobile application envisions a scenario of a grid-independent battery-powered electric vehicle charging station network. The charging stations receive supplies from the energy storage system that absorbs renewable energy, contributing to a sustained DC demand that helps with revenues. Representative results are presented for two operation modes and different sets of weights assigned to the objectives. Substantial improvement in the profitability of combined applications over single stationary applications is shown. Pareto frontier of a reduced dimensional problem is obtained to show the trade-off between design objectives. This work could pave the road for future implementations of the new form of energy storage systems.<br>


Author(s):  
Ayong Hiendro ◽  
Ismail Yusuf ◽  
F. Trias Pontia Wigyarianto ◽  
Kho Hie Khwee ◽  
Junaidi Junaidi

<span lang="EN-US">This paper analyzes influences of renewable fraction on grid-connected photovoltaic (PV) for office building energy systems. The fraction of renewable energy has important contributions on sizing the grid-connected PV systems and selling and buying electricity, and hence reducing net present cost (NPC) and carbon dioxide (CO<sub>2</sub>) emission. An optimum result with the lowest total NPC for serving an office building is achieved by employing the renewable fraction of 58%, in which 58% of electricity is supplied from the PV and the remaining 42% of electricity is purchased from the grid. The results have shown that the optimum grid-connected PV system with an appropriate renewable fraction value could greatly reduce the total NPC and CO<sub>2</sub> emission.</span>


Sign in / Sign up

Export Citation Format

Share Document