scholarly journals Multi-Objective Dispatching Optimization of an Island Microgrid Integrated with Desalination Units and Electric Vehicles

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 798
Author(s):  
Wenqiang Zhu ◽  
Jiang Guo ◽  
Guo Zhao

The renewable energy microgrid is an effective solution for island energy supply with the advantages of low energy cost, environmental protection, and reliability. In this paper, an island renewable energy microgrid integrated with desalination units and electric vehicles is established to meet the self-satisfaction of the island’s sustainable electricity, fresh water, and transportation. The source side components of the system include photovoltaic cells, wind turbines, diesel generators, battery energy storage systems. A multi-objective dispatching optimization method based on the flexibility of electric vehicles and desalination units is proposed comprehensively considering the economy and renewable energy penetration indexes. The optimization objectives are minimizing the comprehensive operating cost, and the net load fluctuation. An improved multi-objective grey wolf optimizer is adopted to solve the dispatching problem. The system is modeled and simulated by MATLAB software. The feasibility of the proposed dispatching optimization method is verified by case studies and operation simulation. Four different cases are compared and analyzed to study the impact of EVs and DES on dispatching optimization.

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5007 ◽  
Author(s):  
Johannes Radl ◽  
Andreas Fleischhacker ◽  
Frida Huglen Revheim ◽  
Georg Lettner ◽  
Hans Auer

The economic value of photovoltaic (PV) systems depends on country-specific conditions. This study investigates the impact of grid fees, solar irradiance and local consumption on the profitability and penetration of PV systems and batteries in renewable energy communities. The linear optimization model calculates the optimal investments into PV and storages applied on a test community, which represents the European housing situation. The comparison of eight countries considers individual heat and cooling demands as well as sector coupling. Results show that renewable energy communities have the potential to reduce electricity costs due to community investments and load aggregation but do not necessarily lead to more distributed PV. Besides full-load hours, the energy component of electricity tariffs has the highest impact on PV distribution. Under current market conditions, battery energy storage systems are rarely profitable for increasing PV self-consumption but there is potential with power pricing. Renewable energy communities enable individuals to be a prosumer without the necessity of owning a PV system. This could lead to more (community) PV investments in the short term. Hence, it hinders investments in a saturated PV market.


2019 ◽  
Vol 9 (11) ◽  
pp. 2267 ◽  
Author(s):  
Jin Chen ◽  
Changsong Chen ◽  
Shanxu Duan

By integrating renewable energy sources (RESs) with electric vehicles (EVs) in microgrids, we are able to reduce carbon emissions as well as alleviate the dependence on fossil fuels. In order to improve the economy of an integrated system and fully exploit the potentiality of EVs’ mobile energy storage while achieving a reasonable configuration of RESs, a cooperative optimization method is proposed to cooperatively optimize the economic dispatching and capacity allocation of both RESs and EVs in the context of a regional multi-microgrid system. An across-time-and-space energy transmission (ATSET) of the EVs was considered, and the impact of ATSET of EVs on economic dispatching and capacity allocation of multi-microgrid system was analyzed. In order to overcome the difficulty of finding the global optimum of the non-smooth total cost function, an improved particle swarm optimization (IPSO) algorithm was used to solve the cooperative optimization problem. Case studies were performed, and the simulation results show that the proposed cooperative optimization method can significantly decrease the total cost of a multi-microgrid system.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2503
Author(s):  
Paulo Rotella Junior ◽  
Luiz Célio Souza Rocha ◽  
Sandra Naomi Morioka ◽  
Ivan Bolis ◽  
Gianfranco Chicco ◽  
...  

Sources such as solar and wind energy are intermittent, and this is seen as a barrier to their wide utilization. The increasing grid integration of intermittent renewable energy sources generation significantly changes the scenario of distribution grid operations. Such operational challenges are minimized by the incorporation of the energy storage system, which plays an important role in improving the stability and the reliability of the grid. This study provides the review of the state-of-the-art in the literature on the economic analysis of battery energy storage systems. The paper makes evident the growing interest of batteries as energy storage systems to improve techno-economic viability of renewable energy systems; provides a comprehensive overview of key methodological possibilities for researchers interested in economic analysis of battery energy storage systems; indicates the need to use adequate economic indicators for investment decisions; and identifies key research topics of the analyzed literature: (i) photovoltaic systems with battery energy storage systems for residential areas, (ii) comparison between energy storage technologies, (iii) power quality improvement. The last key contribution is the proposed research agenda.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 174
Author(s):  
Wenqiang Zhu ◽  
Jiang Guo ◽  
Guo Zhao

Islands are the main platforms for exploration and utilization of marine resources. In this paper, an island hybrid renewable energy microgrid devoted to a stand-alone marine application is established. The specific microgrid is composed of wind turbines, tidal current turbines, and battery storage systems considering the climate resources and precious land resources. A multi-objective sizing optimization method is proposed comprehensively considering the economy, reliability and energy utilization indexes. Three optimization objectives are presented: minimizing the Loss of Power Supply Probability, the Cost of Energy and the Dump Energy Probability. An improved multi-objective grey wolf optimizer based on Halton sequence and social motivation strategy (HSMGWO) is proposed to solve the proposed sizing optimization problem. MATLAB software is utilized to program and simulate the optimization problem of the hybrid energy system. Optimization results confirm that the proposed method and improved algorithm are feasible to optimally size the system, and the energy management strategy effectively matches the requirements of system operation. The proposed HSMGWO shows better convergence and coverage than standard multi-objective grey wolf optimizer (MOGWO) and multi-objective particle swarm optimization (MOPSO) in solving multi-objective sizing problems. Furthermore, the annual operation of the system is simulated, the power generation and economic benefits of each component are analyzed, as well as the sensitivity.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1379
Author(s):  
Md Ruhul Amin ◽  
Michael Negnevitsky ◽  
Evan Franklin ◽  
Kazi Saiful Alam ◽  
Seyed Behzad Naderi

In power systems, high renewable energy penetration generally results in conventional synchronous generators being displaced. Hence, the power system inertia reduces, thus causing a larger frequency deviation when an imbalance between load and generation occurs, and thus potential system instability. The problem associated with this increase in the system’s dynamic response can be addressed by various means, for example, flywheels, supercapacitors, and battery energy storage systems (BESSs). This paper investigates the application of BESSs for primary frequency control in power systems with very high penetration of renewable energy, and consequently, low levels of synchronous generation. By re-creating a major Australian power system separation event and then subsequently simulating the event under low inertia conditions but with BESSs providing frequency support, it has been demonstrated that a droop-controlled BESS can greatly improve frequency response, producing both faster reaction and smaller frequency deviation. Furthermore, it is shown via detailed investigation how factors such as available battery capacity and droop coefficient impact the system frequency response characteristics, providing guidance on how best to mitigate the impact of future synchronous generator retirements. It is intended that this analysis could be beneficial in determining the optimal BESS capacity and droop value to manage the potential frequency stability risks for a future power system with high renewable energy penetrations.


Clean Energy ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 196-207
Author(s):  
Shoichi Sato ◽  
Yasuhiro Noro

Abstract The introduction of large-scale renewable energy requires a control system that can operate multiple distributed inverters in a stable way. This study proposes an inverter control method that uses information corresponding to the inertia of the synchronous generator to coordinate the operation of battery energy storage systems. Simulation results for a system with multiple inverters applying the control method are presented. Various faults such as line-to-line short circuits and three-phase line-to-ground faults were simulated. Two fault points with different characteristics were compared. The voltage, frequency and active power quickly returned to their steady-state values after the fault was eliminated. From the obtained simulation results, it was verified that our control method can be operated stably against various faults.


2021 ◽  
Author(s):  
Hassan Hayajneh ◽  
Xuewei Zhang

To minimize the curtailment of renewable generation and incentivize grid-scale energy storage deployment, a concept of combining stationary and mobile applications of battery energy storage systems built within renewable energy farms is proposed. A simulation-based optimization model is developed to obtain the optimal design parameters such as battery capacity and power ratings by solving a multi-objective optimization problem that aims to maximize the economic profitability, the energy provided for transportation electrification, the demand peak shaving, and the renewable energy utilized. Two applications considered for the stationary energy storage systems are the end-consumer arbitrage and frequency regulation, while the mobile application envisions a scenario of a grid-independent battery-powered electric vehicle charging station network. The charging stations receive supplies from the energy storage system that absorbs renewable energy, contributing to a sustained DC demand that helps with revenues. Representative results are presented for two operation modes and different sets of weights assigned to the objectives. Substantial improvement in the profitability of combined applications over single stationary applications is shown. Pareto frontier of a reduced dimensional problem is obtained to show the trade-off between design objectives. This work could pave the road for future implementations of the new form of energy storage systems.<br>


Sign in / Sign up

Export Citation Format

Share Document