scholarly journals Pressure-Transient Performances of Fractured Horizontal Wells in the Compartmentalized Heterogeneous Unconventional Reservoirs

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5204
Author(s):  
Dongyan Fan ◽  
Hai Sun ◽  
Jun Yao ◽  
Hui Zeng ◽  
Xia Yan ◽  
...  

In order to investigate pressure performance of multiple fractured horizontal wells (MFHWs) penetrating heterogeneous unconventional reservoir and avoid the high computational cost of numerical simulation, a semi-analytical model for MFHWs combining Green function solution and boundary element method has been obtained, where the reservoir is divided into different homogeneous substructures and coupled at interface boundaries by plane source function in a closed rectangular parallelepiped. Hydraulic fractures are assumed uniform flux and dual porosity model is used for natural fractures system. Then the model is validated by compared with analytical solution of MFHWs in a homogeneous reservoir and trilinear flow model, which shows that this model can achieve high accuracy even with a small interface discretization number, and it can consider the radial flow around each hydraulic fractures. Finally, the pressure responses with heterogeneous parameters of reservoirs are discussed including heterogeneous permeability, non-uniform block-length and fracture half-length distribution as well as dual porosity parameters like elastic storage ratio and crossflow ratio.

Fractals ◽  
2019 ◽  
Vol 27 (01) ◽  
pp. 1940004 ◽  
Author(s):  
ZHIYUAN WANG ◽  
ZHENGMING YANG ◽  
YUNHONG DING ◽  
YING HE ◽  
WEI LIN ◽  
...  

Most models for multiple fractured horizontal wells (MFHWs) in tight oil reservoirs (TORs) are based on classical simplified dual-porosity model that ignores the influence of imbibition, while the distribution of fracture system is heterogeneous, multi-scale and self-similar, which can be described by fractal dual-porosity model on fractal theory, and imbibition production is the important part of fracture system production. In this paper, a multi-linear fractal model (MFM) considering imbibition for MFHWs in TORs was established based on fractal theory and semi-analytical method. In this model, fractal theory was used to describe the heterogeneous, complex fracture network, and imbibition was considered by analogy of fluid crossflow law in fractured-porous dual media. And the approximate analytic solution was given by using the Laplace transformation and iteration method. The pressure responses in the domain of real time were obtained with Stehfest numerical inversion algorithms. The pressure transient and production rate were used to analyze, and sensitivity analysis of some related parameters were discussed. The results show that the fluid flow in MFHWs can be divided into nine main flow periods by analysis of type curves, and the fractal parameters of fracture system have great effect on the middle and later periods and imbibition influences the period of crossflow.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Ezulike Daniel Obinna ◽  
Dehghanpour Hassan

The response of existing transient triple-porosity models for fractured horizontal wells do not converge to that of linear dual-porosity model (DPM) in the absence of natural/microfractures (MFs). The main reason is the assumption of sequential-depletion from matrix to MF, and from MF to hydraulic-fractures (HFs). This can result in unreasonable estimates of MF and/or HF parameters. Hence, the authors proposed a quadrilinear flow model (QFM) in a previous paper which relaxes this sequential-depletion assumption to allow simultaneous matrix–MF and matrix–HF depletion. Also, it is proved that QFM simplifies to both DPM and linear sequential triple-porosity model (STPM). This work considers the implications of applying QFM, STPM, and DPM type-curves and analysis equations on production data of two fractured horizontal wells completed in the Bakken and Cardium Formations. A comparative study of the reservoir parameters estimated from the application of these models to the same production data reveals two key results. First, the application of DPM on the production data from reservoirs with active MF could result in overestimation of HF half-length. This happens to compensate for the extra fluid depletion pathways provided by MF. Second, the application of STPM on the production data from the reservoirs with active matrix–HF communication could result in overestimation of the MF intensity. Results from this study are significant when selecting the appropriate model for interpreting production data from fractured horizontal wells completed in formations with or without active MF. The DPM is appropriate if analog studies (e.g., outcrop, microseismic and image log analyses) reveal high fracture spacing aspect ratio (negligible MF) in the reservoir. Fracture spacing aspect ratio is MF spacing divided by the HF spacing. The STPM is appropriate if analog studies reveal low spacing aspect ratio (e.g., matrix–HF face damage or high MF intensity within a given HF spacing). QFM is appropriate for all fracture spacing aspect ratios.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Jingjing Guo ◽  
Haitao Wang ◽  
Liehui Zhang ◽  
Chengyong Li

Triple-porosity model is usually adopted to describe reservoirs with multiscaled pore spaces, including matrix pores, natural fractures, and vugs. Multiple fractures created by hydraulic fracturing can effectively improve the connectivity between existing natural fractures and thus increase well deliverability. However, little work has been done on pressure transient behavior of multistage fractured horizontal wells in triple-porosity reservoirs. Based on source/sink function method, this paper presents a triple-porosity model to investigate the transient pressure dynamics and flux distribution for multistage fractured horizontal wells in fractured-vuggy reservoirs with consideration of stress-dependent natural fracture permeability. The model is semianalytically solved by discretizing hydraulic fractures and Pedrosa’s transformation, perturbation theory, and integration transformation method. Type curves of transient pressure dynamics are generated, and flux distribution among hydraulic fractures for a fractured horizontal well with constant production rate is also discussed. Parametric study shows that major influential parameters on transient pressure responses are parameters pertinent to reservoir properties, interporosity mass transfer, and hydraulic fractures. Analysis of flux distribution indicates that flux density gradually increases from the horizontal wellbore to fracture tips, and the flux contribution of outermost fractures is higher than that of inner fractures. The model can also be extended to optimize hydraulic fracture parameters.


2008 ◽  
Vol 11 (05) ◽  
pp. 902-911 ◽  
Author(s):  
Flavio Medeiros ◽  
Erdal Ozkan ◽  
Hossein Kazemi

Summary This paper discusses the performance and productivity of fractured horizontal wells in heterogeneous, tight-gas formations. Production characteristics and flow regimes of unfractured and fractured horizontal wells are documented. The results show that if hydraulic fracturing affects stress distribution to create or rejuvenate natural fractures around the well, the productivity of the system is significantly increased. Unless there is significant contrast between the conductivities of the hydraulic and natural fractures, hydraulic fractures may not significantly contribute to the productivity. For extremely tight formations, the effective drainage area may be limited to the naturally fractured region around the well and the hydraulic fractures. It is also shown that very long transient flow periods govern the productivity and economics of fractured horizontal wells in tight formations. The results of this study are also applicable to oil production from fractured shale. Introduction Economic gas and oil production from low permeability reservoirs has been a challenge for the oil and gas industry. Because most of the high permeability reservoirs have been exploited and many low permeability reservoirs remain undeveloped, the latter have taken the industry attention recently. Particular attention has been given to tight-gas reservoirs with permeability in the range of micro-Darcies or below and to oil accumulation in fractured shale. Hydraulically fractured horizontal wells are the proven technology to produce oil and gas from tight formations. Hydraulic fractures reduce well drawndown, increase the productivity of horizontal wells by increasing the surface area in contact with formation, and provide high conductivity paths to the wellbore. Depending on in-situ stress orientation, hydraulic fractures can be parallel (longitudinal) or perpendicular (transverse) to horizontal well axis. Project economics in tight formations, however, depends strongly on well spacing and the number of hydraulic fractures required to drain the reservoir efficiently. Field evidence indicates that the drainage areas of fractured horizontal wells in tight formations may be limited to a rectangular region confining the horizontal well and the transverse hydraulic fractures. Also, there has been evidence that hydraulic fracturing in tight formations changes stresses in fracture drainage area, which could create or rejuvenate natural fractures in the near-vicinity of the horizontal well. This fracture network, which may be characterized as a dual-porosity system, may contribute significantly to improve productivity of the fractured horizontal well. Much work has been done (Soliman et al. 1990; Larsen and Hegre 1994; Temeng and Horne 1995; Raghavan et al. 1997; Wan and Aziz 1999; Al-Kobaisi et al. 2006) to investigate pressure-transient analysis and short- and long-term productivity of horizontal wells with single or multiple hydraulic fractures. The effect of a dual-porosity zone surrounding hydraulic fractures, however, has not been considered in the previous studies. The main objective of this study is to investigate the combined effects of a dual-porosity region and hydraulic fractures on the productivity of horizontal wells. The results presented in this work are based on a semianalytical model developed by Medeiros et al. (2006). The model was derived from the Green's function formulation of the solution for the diffusivity equation (Gringarten and Ramey, 1974, Ozkan and Raghavan, 1991a, 1991b) and has the capability to incorporate local heterogeneities. In this work, we use the semianalytical model to incorporate induced finite-conductivity fractures (transverse and longitudinal) along the horizontal well and naturally fractured zones around the hydraulically fractured horizontal well by using the dual-porosity idealization. We use the example data sets given in Tables 1 through 3 to consider different cases of horizontal wells with and without induced and natural fractures.


Ground Water ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 558-564 ◽  
Author(s):  
Seiyed Mossa Hosseini ◽  
Behzad Ataie-Ashtiani

2007 ◽  
Vol 205 (1-2) ◽  
pp. 123-134 ◽  
Author(s):  
Martin H. Larsson ◽  
Kristian Persson ◽  
Barbro Ulén ◽  
Anders Lindsjö ◽  
Nicholas J. Jarvis

Sign in / Sign up

Export Citation Format

Share Document