scholarly journals Classification of Partial Discharge Images Using Deep Convolutional Neural Networks

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5496 ◽  
Author(s):  
Marek Florkowski

Artificial intelligence-based solutions and applications have great potential in various fields of electrical power engineering. The problem of the electrical reliability of power equipment directly refers to the immunity of high-voltage (HV) insulation systems to operating stresses, overvoltages and other stresses—in particular, those involving strong electric fields. Therefore, tracing material degradation processes in insulation systems requires dedicated diagnostics; one of the most reliable quality indicators of high-voltage insulation systems is partial discharge (PD) measurement. In this paper, an example of the application of a neural network to partial discharge images is presented, which is based on the convolutional neural network (CNN) architecture, and used to recognize the stages of the aging of high-voltage electrical insulation based on PD images. Partial discharge images refer to phase-resolved patterns revealing various discharge stages and forms. The test specimens were aged under high electric stress, and the measurement results were saved continuously within a predefined time period. The four distinguishable classes of the electrical insulation degradation process were defined, mimicking the changes that occurred within the electrical insulation in the specimens (i.e., start, middle, end and noise/disturbance), with the goal of properly recognizing these stages in the untrained image samples. The results reflect the exemplary performance of the CNN and its resilience to manipulations of the network architecture and values of the hyperparameters. Convolutional neural networks seem to be a promising component of future autonomous PD expert systems.

Author(s):  
Н.А. Полковникова ◽  
Е.В. Тузинкевич ◽  
А.Н. Попов

В статье рассмотрены технологии компьютерного зрения на основе глубоких свёрточных нейронных сетей. Применение нейронных сетей особенно эффективно для решения трудно формализуемых задач. Разработана архитектура свёрточной нейронной сети применительно к задаче распознавания и классификации морских объектов на изображениях. В ходе исследования выполнен ретроспективный анализ технологий компьютерного зрения и выявлен ряд проблем, связанных с применением нейронных сетей: «исчезающий» градиент, переобучение и вычислительная сложность. При разработке архитектуры нейросети предложено использовать функцию активации RELU, обучение некоторых случайно выбранных нейронов и нормализацию с целью упрощения архитектуры нейросети. Сравнение используемых в нейросети функций активации ReLU, LeakyReLU, Exponential ReLU и SOFTMAX выполнено в среде Matlab R2020a. На основе свёрточной нейронной сети разработана программа на языке программирования Visual C# в среде MS Visual Studio для распознавания морских объектов. Программапредназначена для автоматизированной идентификации морских объектов, производит детектирование (нахождение объектов на изображении) и распознавание объектов с высокой вероятностью обнаружения. The article considers computer vision technologies based on deep convolutional neural networks. Application of neural networks is particularly effective for solving difficult formalized problems. As a result convolutional neural network architecture to the problem of recognition and classification of marine objects on images is implemented. In the research process a retrospective analysis of computer vision technologies was performed and a number of problems associated with the use of neural networks were identified: vanishing gradient, overfitting and computational complexity. To solve these problems in neural network architecture development, it was proposed to use RELU activation function, training some randomly selected neurons and normalization for simplification of neural network architecture. Comparison of ReLU, LeakyReLU, Exponential ReLU, and SOFTMAX activation functions used in the neural network implemented in Matlab R2020a.The computer program based on convolutional neural network for marine objects recognition implemented in Visual C# programming language in MS Visual Studio integrated development environment. The program is designed for automated identification of marine objects, produces detection (i.e., presence of objects on image), and objects recognition with high probability of detection.


2021 ◽  
Author(s):  
Shima Baniadamdizaj ◽  
Mohammadreza Soheili ◽  
Azadeh Mansouri

Abstract Today integration of facts from virtual and paper files may be very vital for the expertise control of efficient. This calls for the record to be localized at the photograph. Several strategies had been proposed to resolve this trouble; however, they may be primarily based totally on conventional photograph processing strategies that aren't sturdy to intense viewpoints and backgrounds. Deep Convolutional Neural Networks (CNNs), on the opposite hand, have demonstrated to be extraordinarily sturdy to versions in history and viewing attitude for item detection and classification responsibilities. We endorse new utilization of Neural Networks (NNs) for the localization trouble as a localization trouble. The proposed technique ought to even localize photos that don't have a very square shape. Also, we used a newly accrued dataset that has extra tough responsibilities internal and is in the direction of a slipshod user. The end result knowledgeable in 3 exclusive classes of photos and our proposed technique has 83% on average. The end result is as compared with the maximum famous record localization strategies and cell applications.


2020 ◽  
Author(s):  
B Wang ◽  
Y Sun ◽  
Bing Xue ◽  
Mengjie Zhang

© 2019, Springer Nature Switzerland AG. Image classification is a difficult machine learning task, where Convolutional Neural Networks (CNNs) have been applied for over 20 years in order to solve the problem. In recent years, instead of the traditional way of only connecting the current layer with its next layer, shortcut connections have been proposed to connect the current layer with its forward layers apart from its next layer, which has been proved to be able to facilitate the training process of deep CNNs. However, there are various ways to build the shortcut connections, it is hard to manually design the best shortcut connections when solving a particular problem, especially given the design of the network architecture is already very challenging. In this paper, a hybrid evolutionary computation (EC) method is proposed to automatically evolve both the architecture of deep CNNs and the shortcut connections. Three major contributions of this work are: Firstly, a new encoding strategy is proposed to encode a CNN, where the architecture and the shortcut connections are encoded separately; Secondly, a hybrid two-level EC method, which combines particle swarm optimisation and genetic algorithms, is developed to search for the optimal CNNs; Lastly, an adjustable learning rate is introduced for the fitness evaluations, which provides a better learning rate for the training process given a fixed number of epochs. The proposed algorithm is evaluated on three widely used benchmark datasets of image classification and compared with 12 peer Non-EC based competitors and one EC based competitor. The experimental results demonstrate that the proposed method outperforms all of the peer competitors in terms of classification accuracy.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012013
Author(s):  
Priyadarshini Chatterjee ◽  
Dutta Sushama Rani

Abstract Automated diagnosis of diseases in the recent years have gain lots of advantages and potential. Specially automated screening of cancers has helped the clinicians over the time. Sometimes it is seen that the diagnosis of the clinicians is biased but automated detection can help them to come to a proper conclusion. Automated screening is implemented using either artificial inter connected system or convolutional inter connected system. As Artificial neural network is slow in computation, so Convolutional Neural Network has achieved lots of importance in the recent years. It is also seen that Convolutional Neural Network architecture requires a smaller number of datasets. This also provides them an edge over Artificial Neural Networks. Convolutional Neural Networks is used for both segmentation and classification. Image dissection is one of the important steps in the model used for any kind of image analysis. This paper surveys various such Convolutional Neural Networks that are used for medical image analysis.


2019 ◽  
Vol 1 (11) ◽  
Author(s):  
Chollette C. Olisah ◽  
Lyndon Smith

Abstract Deep convolutional neural networks have achieved huge successes in application domains like object and face recognition. The performance gain is attributed to different facets of the network architecture such as: depth of the convolutional layers, activation function, pooling, batch normalization, forward and back propagation and many more. However, very little emphasis is made on the preprocessor’s module of the network. Therefore, in this paper, the network’s preprocessing module is varied across different preprocessing approaches while keeping constant other facets of the deep network architecture, to investigate the contribution preprocessing makes to the network. Commonly used preprocessors are the data augmentation and normalization and are termed conventional preprocessors. Others are termed the unconventional preprocessors, they are: color space converters; grey-level resolution preprocessors; full-based and plane-based image quantization, Gaussian blur, illumination normalization and insensitive feature preprocessors. To achieve fixed network parameters, CNNs with transfer learning is employed. The aim is to transfer knowledge from the high-level feature vectors of the Inception-V3 network to offline preprocessed LFW target data; and features is trained using the SoftMax classifier for face identification. The experiments show that the discriminative capability of the deep networks can be improved by preprocessing RGB data with some of the unconventional preprocessors before feeding it to the CNNs. However, for best performance, the right setup of preprocessed data with augmentation and/or normalization is required. Summarily, preprocessing data before it is fed to the deep network is found to increase the homogeneity of neighborhood pixels even at reduced bit depth which serves for better storage efficiency.


In this paper we will identify a cry signals of infants and the explanation behind the screams below 0-6 months of segment age. Detection of baby cry signals is essential for the pre-processing of various applications involving crial analysis for baby caregivers, such as emotion detection. Since cry signals hold baby well-being information and can be understood to an extent by experienced parents and experts. We train and validate the neural network architecture for baby cry detection and also test the fastAI with the neural network. Trained neural networks will provide a model and this model can predict the reason behind the cry sound. Only the cry sounds are recognized, and alert the user automatically. Created a web application by responding and detecting different emotions including hunger, tired, discomfort, bellypain.


Author(s):  
Liming Zhao ◽  
Mingjie Li ◽  
Depu Meng ◽  
Xi Li ◽  
Zhaoxiang Zhang ◽  
...  

A deep residual network, built by stacking a sequence of residual blocks, is easy to train, because identity mappings skip residual branches and thus improve information flow. To further reduce the training difficulty, we present a simple network architecture, deep merge-and-run neural networks. The novelty lies in a modularized building block, merge-and-run block, which assembles residual branches in parallel through a merge-and-run mapping: average the inputs of these residual branches (Merge), and add the average to the output of each residual branch as the input of the subsequent residual branch (Run), respectively. We show that the merge-and-run mapping is a linear idempotent function in which the transformation matrix is idempotent, and thus improves information flow, making training easy. In comparison with residual networks, our networks enjoy compelling advantages: they contain much shorter paths and the width, i.e., the number of channels, is increased, and the time complexity remains unchanged. We evaluate the performance on the standard recognition tasks. Our approach demonstrates consistent improvements over ResNets with the comparable setup, and achieves competitive results (e.g., 3.06% testing error on CIFAR-10, 17.55% on CIFAR-100, 1.51% on SVHN). 


2017 ◽  
Vol 115 (2) ◽  
pp. 254-259 ◽  
Author(s):  
Daniël M. Pelt ◽  
James A. Sethian

Deep convolutional neural networks have been successfully applied to many image-processing problems in recent works. Popular network architectures often add additional operations and connections to the standard architecture to enable training deeper networks. To achieve accurate results in practice, a large number of trainable parameters are often required. Here, we introduce a network architecture based on using dilated convolutions to capture features at different image scales and densely connecting all feature maps with each other. The resulting architecture is able to achieve accurate results with relatively few parameters and consists of a single set of operations, making it easier to implement, train, and apply in practice, and automatically adapts to different problems. We compare results of the proposed network architecture with popular existing architectures for several segmentation problems, showing that the proposed architecture is able to achieve accurate results with fewer parameters, with a reduced risk of overfitting the training data.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Han Jiao ◽  
Xinhua Jiang ◽  
Zhiyong Pang ◽  
Xiaofeng Lin ◽  
Yihua Huang ◽  
...  

Breast segmentation and mass detection in medical images are important for diagnosis and treatment follow-up. Automation of these challenging tasks can assist radiologists by reducing the high manual workload of breast cancer analysis. In this paper, deep convolutional neural networks (DCNN) were employed for breast segmentation and mass detection in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). First, the region of the breasts was segmented from the remaining body parts by building a fully convolutional neural network based on U-Net++. Using the method of deep learning to extract the target area can help to reduce the interference external to the breast. Second, a faster region with convolutional neural network (Faster RCNN) was used for mass detection on segmented breast images. The dataset of DCE-MRI used in this study was obtained from 75 patients, and a 5-fold cross validation method was adopted. The statistical analysis of breast region segmentation was carried out by computing the Dice similarity coefficient (DSC), Jaccard coefficient, and segmentation sensitivity. For validation of breast mass detection, the sensitivity with the number of false positives per case was computed and analyzed. The Dice and Jaccard coefficients and the segmentation sensitivity value for breast region segmentation were 0.951, 0.908, and 0.948, respectively, which were better than those of the original U-Net algorithm, and the average sensitivity for mass detection achieved 0.874 with 3.4 false positives per case.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2393 ◽  
Author(s):  
Daniel Octavian Melinte ◽  
Luige Vladareanu

The interaction between humans and an NAO robot using deep convolutional neural networks (CNN) is presented in this paper based on an innovative end-to-end pipeline method that applies two optimized CNNs, one for face recognition (FR) and another one for the facial expression recognition (FER) in order to obtain real-time inference speed for the entire process. Two different models for FR are considered, one known to be very accurate, but has low inference speed (faster region-based convolutional neural network), and one that is not as accurate but has high inference speed (single shot detector convolutional neural network). For emotion recognition transfer learning and fine-tuning of three CNN models (VGG, Inception V3 and ResNet) has been used. The overall results show that single shot detector convolutional neural network (SSD CNN) and faster region-based convolutional neural network (Faster R-CNN) models for face detection share almost the same accuracy: 97.8% for Faster R-CNN on PASCAL visual object classes (PASCAL VOCs) evaluation metrics and 97.42% for SSD Inception. In terms of FER, ResNet obtained the highest training accuracy (90.14%), while the visual geometry group (VGG) network had 87% accuracy and Inception V3 reached 81%. The results show improvements over 10% when using two serialized CNN, instead of using only the FER CNN, while the recent optimization model, called rectified adaptive moment optimization (RAdam), lead to a better generalization and accuracy improvement of 3%-4% on each emotion recognition CNN.


Sign in / Sign up

Export Citation Format

Share Document